29.03.2024

Сколько микроэлементов в клетке: микро- и макроэлементы / Справочник :: Бингоскул

Содержание

Микроэлементы, таблица и подробная информация о микроэлементах

Элементы

Из 92 встречающихся в природе химических элементов 81 обнаружен в организме человека. 12 элементов называют структурными, т.к. они составляют 99 % элементного состава человеческого организма: (углерод С, Кислород О,  Водород Н,  Азот N,  Кальций Ca, Магний Mg, Натрий Na, Калий K, Сера S, Фосфор P, Фтор F, Хлор Cl).

Микроэлементами (МЭ) называют элементы, присутствующие в организме человека в очень малых следовых количествах (англ. — “trace elements”). Это в первую очередь 15 эссенциальных (жизненно необходимых, от англ. “essential”) — Fe, I, Cu, Zn, Co, Cr, Mo, Ni, V, Se, Mn, As, F, Si, Li, а также условно-эссенциальные B, Br. Элементы Cd, Pb, Al, Rb являются серьезными кандидатами на эссенциальность. В учение о МЭ особенно отчетливо видна справедливость слов Парацельса о том, что “нет токсичных веществ, а есть токсичные дозы”.

МЭ являются важнейшими катализаторами различных биохимических процессов, обмена веществ, играют значительную роль в адаптации организма в норме и патологии. Ряд элементов широко представленных в природе, редко встречается у человека, и наоборот. В этом проявляются особенности накопления элементов — активное и избирательное использование элементов внешней среды для поддержания гомеостаза и построения организма вне зависимости от меняющихся параметров внешних условий.

Хорошо известно, что микроэлементы обладают широким спектром синергических и антагонистических взаимоотношений. Так, показано, что между 15 известными жизненно необходимыми элементами существует 105 двусторонних и 455 трехсторонних взаимодействий. Это положение является естественной основой для изучения проявлений и оценки развития дисбаланса микроэлементного гомеостаза, столь характерного при дефиците даже одного эссенциального элемента.

Микроэлементный гомеостаз может нарушаться при недостаточном поступлении эссенциальных МЭ и/или избыточном поступлении в организм токсических микроэлементов. Причем, с учетом сложных антагонистических и синергических взаимовлияний и отношений между элементами, картина интоксикации или возникновения патологического состояния и заболеваний может быть очень сложной и трудной для интерпретации. В этом случае очень важна адекватная диагностика микроэлементозов, связанная, в первую очередь, с точным количественным определением элементов в индикаторных биосубстратах человека.

Накопленные к настоящему времени научные и медицинские данные о роли минеральных элементов в функционировании отдельных органов, систем и организма человека в целом, данные о последствиях, для здоровья человека, дефицита биогенных, жизненно необходимых элементов и избытка токсичных могут быть обобщены и используются в диагностической и лечебной практике Центром Биотической Медицины под руководством д.

м.н. проф. А.В.Скального.

Подробно о каждом элементе:

Смотрите научные статьи в нашем журнале Микроэлементы в медицине


Исследование крови на микроэлементы Анализ волос на микроэлементы Определение содержание микроэлементов в моче Оценка шерсти животных на микроэлементный состав Анализ эякулята на микроэлементный статус Анализ слюны на микроэлементный состав Анализ волос на эссенциальные микроэлементы Анализ взаимодействия микроэлементов в реальной среде Источники микроэлементов Сопоставительный анализ крови и волос у пациентов с челюстно лицевой патологией можно увидеть здесь Большинство измерений элементного состава волос, крови, эякулята и других субстратах выполняется в лаборатории ЦБМ на самом современном оборудовании с использованием методик, разработанных с участием наших специалистов и аттестованных органами метрологического надзора за качеством измерений РФ: Аттестованная методика измерений элементов в волосах, крови и других биосубстратах человека

Микроэлементы | справочник Пестициды.

ru

Микроэлементы являются активным веществом микроудобрений.

Микроэлементы распространены в земной коре в концентрациях, не превышающих 0,1 %, а в живом веществе они обнаруживаются в количестве 10-3–10-12%. К группе микроэлементов относят металлы, неметаллы, галогены. Единственная их общая черта – низкое содержание в живых тканях.

Микроэлементы принимают самое активное участие во многих жизненных процессах, происходящих в растениях на молекулярном уровне. Путем воздействия на ферментную систему либо в непосредственной связи с биополимерами растений они стимулируют или ингибируют протекание физиологических процессов в тканях.

Для корректировки содержания микроэлементов в почве практикуют некорневые подкормки в течение вегетации, предпосевную обработку семян и посадочного материала, а также внесение в почву необходимых веществ в виде удобрений.

Физические и химические свойства

Микроэлементы различны по своим физическим и химическим свойствам. Среди них встречаются металлы (цинк, медь, марганец, кобальт, ванадий, молибден), неметаллы (бор), галогены (йод).

Химические элементы подразделяются на необходимые для растений и полезные им.

питательные элементы отвечают следующим требованиям:
  • без элемента не может завершиться жизненный цикл растения;
  • физиологические функции, выполняемые с участием конкретного элемента, не осуществляются при его замене на другой элемент;
  • элемент обязательно вовлекается в метаболизм растения.

Однако существует ряд условностей в использовании данного термина. Дело в том, что сложности с его применением возникают уже при сравнении необходимости того или иного элемента для жизни высших и низших растений и, тем более, животных и человека. Так, например, не доказана необходимость бора для некоторых грибов, спорна необходимость наличия кобальта для осуществления физиологических функций целого ряда растений. К бесспорно необходимым элементам относят марганец, цинк, медь, молибден, бор, хлор, никель.

– это питательные элементы, обладающие способностью стимулировать рост и развитие растений, но не в полной мере соответствующие трем требованиям, приведенным выше. К этой группе относятся и те элементы, которые необходимы только в определенных условиях и только для определенных видов растений. В настоящее время из микроэлементов полезными для растений считаются кобальт, селен, кремний, алюминий, йод и другие.
[2]

В настоящее время жизненно необходимыми для растений считаются только около десяти микроэлементов, еще несколько – необходимыми узкому кругу видов. Для остальных элементов известно, что они могут оказывать стимулирующее действие на растения, но их функции не установлены.[5]

Некоторые физические и химические свойства микроэлементов, согласно данным:[3][9]

Микроэлемент

Атомный номер

Атомная масса

Группа

Cвойства

Т. кип,

°C

Т. плавл,

°C

Физическое состояние при нормальны условиях

Бор (В)

5

10,81

III

неметалл

3700

2075

порошок черного цвета

Ванадий (

V)

23

50,94

V

металл

3400

1900

металл серебристого цвета

Йод (I)

53

126,90

VII

галоген

113,6

185,5

черно-фиолетовые кристаллы

Марганец (Mn)

25

54,94

VII

металл

2095

1244

металл серебристого белого цвета

Кобальт (Со)

27

59,93

VIII

металл

2960

1494

твердый, тягучий, блестящий металл

Медь (Cu)

29

63,54

I

металл

2600

1083

металл красного, в изломе розового цвета

Цинк (Zn)

30

65,39

II

металл

906

419,5

голубовато-серебристый металл

Молибден (Мо)

42

95,94

VI

металл

4800

2620

светло-серый металл

Содержание микроэлементов в природе

Микроэлементы содержатся в небольших количествах практически повсеместно: в горных породах, почве, растениях и, естественно, в организме человека и животных.

Бор. В небольших количествах в составе различных соединений можно встретить во всех почвах, воде, в составе растительных и животных организмов.[5]

Йод. Образует мало самостоятельных минералов, но присутствует во многих в виде изоморфных примесей.[5]

Марганец. Один из наиболее распространенных в литосфере элементов. Преобладает в почвообразующих породах.[2]

Кобальт. Содержание в литосфере незначительно. Присутствует в растениях, при этом, бобовые культуры богаче кобальтом, чем злаковые.[6]

Медь. В земной коре – 0,01 %. Встречается в свободном состоянии в виде самородков, иногда очень значительных размеров.[7]

Цинк. Широко распространен в природе. В породах цинк содержится в виде простого сульфида, а также замещает магний в силикатах.[2]

Ванадий. Относится к рассеянным элементам и в свободном виде в природе не встречается.[7]

Молибден. Связан с гранитными и другими кислыми магматическими породами. Содержание его в этих породах колеблется в пределах 1–2 мг/кг.[5]

Факторы, определяющие концентрацию микроэлементов в почвах

Содержание микроэлементов в почвах зависит от многих факторов и подчинено ряду закономерностей:

  • Чем больше микроэлементов в горной породе, тем больше их и в почве. Эта неизменная, за некоторым исключением, закономерность (например, йод) проистекает из того факта, что основным источником поступления микроэлементов в почву являются материнские горные породы. Известно, что в процессе длительного почвообразования происходит перераспределение химических элементов исходных горных пород, но при этом специфические свойства и химические особенности микроэлементов горных пород практически навсегда сохраняются в почвах.[1]
  • Концентрация микроэлементов в почвообразующих породах увеличивается с возрастанием содержания физической глины и уменьшается с увеличением содержания песка и супеси. Это объясняется тем, что в состав глин включен монтмориллонит, содержащий большую концентрацию микроэлементов, чем включенный в состав песка кварц. Обычно в пределах одного почвенного района закономерность возрастания содержания микроэлементов от песков к глинистым породам увеличивается, но между породами в различных областях можно наблюдать значительные различия.
  • Один из определяющих факторов содержания микроэлементов в породах – карбонатность.
  • Почвы с реакцией, близкой к нейтральной, содержат больше микроэлементов.
  • Почвообразующие породы, расположенные в зоне активного воздействия грунтовых вод и подверженные процессу заболачивания, приобретают некоторые особенности по содержанию микроэлементов.
  • Почвы с повышенным накоплением органического вещества, как правило, и микроэлементами обеспечены в достаточной степени. Это связано с тем, что в растительных остатках и плазме микроорганизмов находится значительное количество микроэлементов. Гумусовые вещества обладают большей адсорбционной способностью и поглощают ионы микроэлементов из окружающей среды.
  • Содержание в почве водорастворимых солей оказывает большое влияние на наличие в ней микроэлементов.
  • Специфика условий почвообразования также накладывает свой отпечаток на количественное содержание микроэлементов в почвах.
  • Концентрация микроэлементов в грунтовых водах сильно влияет на их содержание в почве. В данном случае наблюдается тесная взаимосвязь, поскольку и колебание концентрации микроэлементов в почвенно-грунтовых водах – следствие разнообразия почвенного покрова и почвообразующих пород.[1]
  • «>

Содержание микроэлементов в различных типах почв

характеризуются самыми высокими концентрациями микроэлементов (исключение – барий). содержат в 2–2,5 раза больше кобальта, стронция и хрома, чем пески. Содержание ванадия, бора и марганца в тех же породах уже в 3–4 раза больше, чем в песчаных. накапливают ванадий, хром, марганец, кобальт. включают подвижные формы меди и марганца. и близкой к нейтральной реакцией содержат больше марганца. содержат больше валового и подвижного кобальта. характеризуются содержанием подвижного бора от 10 до 20 % от валового.

Однако по общим запасам микроэлементов в почве нельзя судить об их доступности для растений. Микроэлементы могут присутствовать в почве в формах, недоступных растениям. В связи с этим важно учитывать не столько общее содержание микроэлементов, сколько наличие их усвояемых форм.[1]

Содержание валовых и усвояемых форм микроэлементов в основных типах почв СНГ. (мг/кг) числитель – валовое содержание, знаменатель – усвояемые формы, согласно данным:[1]

Почва

B

Cu

Zn

Mn

Mo

Co

V

I

Дерново-

подзолистая

1,5–6 ,6

0,08–0,38

0,1–47,9

0,05–5,0

20–67

0,12–20,0

40–7200

50,0–150

1,0–4,0

0,04–0,97

0,45–14,0

0,12–3,0

10–62

н. д.

0,5–4,4

н.д.

Чернозем

4–12

0,38–1,58

7–18

4,5–10,0

24–90

0,10–0,25

200–5600

1,0–75

0,7–8,6

0,02–0,33

2,6–13,0

1,10–2,2

37–125

н.д.

2,0–9,8

н.д.

Серозем

8,8–160,3

0,23–0,62

5–20

2,5–10,0

26–63

0,09–1,12

310–3800

1,5-125

0,7–2,0

0,03-0,15

н. д.

0,9-1,5

50–87

н.д.

1,3–38

н.д.

Каштановая

100–200

0,30–0,90

0,6–20

8,0–14,0

53

0,06–0,14

600–1270

1,5–75

0,2–2,0

0,09–0,62

8,6

0,1–6,0

56

н.д.

2,0–9,8

н.д.

Бурая

40,5

0,38–1,95

14–44,5

6,0–12,0

32,5–54,0

0,03–0,20

390–580

1,5–75

0,4–2,8

0,06–0,12

2,3–3,8

0,57–2,25

56

н. д.

0,3–5,3

н.д.

Роль в растении

Биохимические функции

Роль микроэлементов для растений многогранна. Они призваны улучшать обмен веществ, устранять функциональные нарушения, содействовать нормальному течению физиолого-биохимических процессов, влиять на процессы фотосинтеза и дыхания. Под действием микроэлементов возрастает устойчивость растений к бактериальным и грибковым заболеваниям, неблагоприятным факторам окружающей среды (засухе, повышению или понижению температуры, тяжелой зимовке и прочим).

Установлено, что микроэлементы входят в состав большого числа ферментов, играющих важную роль в жизни растений. Все биохимические реакции синтеза, распада, обмена органических веществ протекают только при участии ферментов.

в составе микроудобрений повышают активность ферментов пероксидазы и полифенолоксидазы как в семядолях, так и в корнях гороха, но не изменяют их активности в проростках. При этом, и у гороха, и у кукурузы пероксидазная окислительная система преобладает над полифенолоксидазной.

Микроэлементы с ферментами могут быть связаны прочно и непрочно. Непрочные связи присущи тем элементам, которые способны оказывать сходное действие на направленность фотосинтеза, окислительно-восстановительных процессов, обмен углеводов, накопление витаминов и ряд других процессов. Это микроэлементы, вступающие в биохимические реакции как двухвалентные металлы. Примером могут служить цинк и кобальт.[1]

Роль в растении и главные функции некоторых необходимых питательные микроэлементов, согласно данным:[5]

Микроэлемент

В какие компоненты входит

Процессы, в которых участвует

Бор

Фосфоглюконаты

Метаболизм и перенос углеводов,

Синтез флавоноидов, 

Синтез нуклеиновых кислот,

Утилизация фосфата,образование полифенолов.

Кобальт

Кофермент кобамид

Симбиотическая фиксация азота (возможно и у не клубеньковых растений), стимулирование окислительно-восстановительных реакций при синтезе хлорофилла и протеинов.

Медь

Разнообразные оксиданты, пластоцианины, ценилоплазмин.

Окисление, фотосинтез, метаболизм протеинов и углеводов,

Возможно, участвует в симбиотической фиксации азота и окислительно-восстановительных реакциях.

Йод

Тирозин и его производные у покрытосеменных  и водорослей

 

Марганец

Многие ферментные системы

Фотопродукция кислорода в хлоропластах и косвенное участие  в восстановлении NO3

Молибден

Нитратредуктаза, нитрогеназа, оксидазы и молибденоферридоксин

Фиксация азота, восстановление NO3

Окислительно-восстановительные реакции

Ванадий

Порфины,  гемопротеины

Метаболизм липидов, фотосинтез в зеленых водорослях и, возможно, участие в фиксации N2

Цинк

Ангидразы, дегидрогеназы, протеиназы и пептидазы

Метаболизм углеводов и белков

Недостаток (дефицит) микроэлементов в растениях

Изменения листьев при дефиците цинка

Изменения листьев при дефиците цинка


1 – хлороз листьев пшеницы; 2 – бурые пятна на листьях риса

Использовано изображение:[13][15]

При недостаточном поступлении какого-либо микроэлемента из числа необходимых питательных элементов рост растения отклоняется от нормы или прекращается вовсе, а дальнейшее развитие растения, в особенности его метаболические циклы, нарушаются. [5]

При недостатке микроэлементов активность многих ферментов резко снижается. Например, установлено, что при недостатке меди резко падает активность ферментов, в состав которых входит медь, а именно, полифенолоксидазы и аскорбатоксидазы.[1]

Симптомы недостаточности (дефицита) трудно свести к одному знаменателю, но, все же, они характерны для конкретных микроэлементов. Наиболее часто наблюдается хлороз.

Визуальная симптоматика очень важна для диагностики недостаточности, но нарушения метаболических процессов и, как следствие, потеря биомассы продукции могут наступать прежде, чем симптомы недостаточности будут заметны. Для улучшения методов диагностики дефицита микроэлементов ряд авторов предлагает биохимические индикаторы. К сожалению, широкое применение этого способа ограничено в связи с большой изменчивостью энзиматической активности и трудностью определения данного показателя.

Наиболее широко используются тесты – анализ почв и растений. Но и в этом случае неподвижные формы микроэлементов, находящиеся в старых частях растения, могут исказить данные. Однако анализ растительных тканей успешно используют для установления дефицита микроэлементов путем сравнения с содержанием этих соединений в тех же тканях нормальных растений, того же возраста и в тех же органах.

При устранении дефицита микроэлементов при помощи удобрений следует учитывать тот факт, что подобная процедура является эффективной, только если содержание элемента в почве либо его доступность достаточно низкие.

В любом случае, формирование дефицита микроэлементов в растениях является результатом сложного взаимодействия нескольких факторов. Многочисленные наблюдения доказали, что свойства и генезис почв – это главные причины, вызывающие дефицит микроэлементов в растении. Обычно недостаток микроэлементов связан с почвами высокой кислотности (светлыми песчанистыми) и щелочными (известковистыми) почвами с неблагоприятным водным режимом, а также с избытком фосфатов, азота, кальция, оксидов железа и марганца. [5]

Симптомы недостатка микроэлементов питания у сельскохозяйственных культур, согласно данным:[5]

Элемент

Симптомы

Чувствительные культуры

Бор

Хлороз и покоричневение молодых листьев,

Погибшие верхушечные почки,

Нарушение развития цветов,

Поражение сердцевины растений и корней,

Мультипликация при делении клеток

Бобовые,

Капуста и близкие виды,

Свекла,

Сельдерей,

Виноград,

Фруктовые деревья (груши и яблони)

Медь

Вилт,

Меланизм,

Белые скрученные макушки,

Ослабление образования метелок,

Нарушение одревеснения

Злаки (овес),

Подсолнечник,

Шпинат,

Люцерна.

Марганец

Пятна хлороза,

Некроз молодых листьев,

Ослабленный тургор

Злаки (овес),

Бобовые,

Фруктовые деревья (яблони, вишни, цитрусовые)

Молибден

Хлороз края листовой пластинки,

Нарушение свертывания цветной капусты,

Огненные края и деформация листьев,

Разрушение зародышевых тканей.

Капуста, близкие виды,

Бобовые

Цинк

Межжилковый хлороз (у однодольных),

Остановка роста,

Розетчатость листьев у деревьев,

Фиолетово-красные точки на листьях

 

Зерновые (кукуруза),

Бобовые,

Травы,

Хмель,

Лен,

Виноград,

Фруктовые деревья (цитрусы).

Избыток микроэлементов в растениях

Дисбаланс микроэлементов

Дисбаланс микроэлементов


Поражения листовой пластины при дефиците и избытке микроэлементов у пшеницы

1 – избыток бора; 2 – избыток марганца;

3 – дефицит цинка

Использовано изображение:[11][12][14]

Метаболические нарушения в растениях вызывают не только недостаток, но и избыток элементов питания. Растения более устойчивы к повышенной, чем к пониженной концентрации микроэлементов.

Главные реакции, связанные с токсичным действием микроэлементов:

  • изменение проницаемости клеточных мембран;
  • реакции тиольных групп с катионами;
  • конкуренция с жизненно важными метаболитами;
  • большое сродство с фосфатными группами и активными центрами в АДФ и АТФ;
  • захват в молекулах позиций, занимаемых жизненно важными группами, такими, как фосфат и нитрат.

Оценка влияния токсичных концентраций элементов на растение достаточно сложна, поскольку зависит от множества факторов. К числу наиболее важных относят пропорции, в которых ионы и их соединения присутствуют в почвенном растворе.

Например, токсичность арсената и селената заметно понижается при избытке сульфата и фосфата. Металлоорганические соединения могут быть более токсичными, чем катионы того же элемента. Кислородные анионы элементов, как правило, более ядовиты, чем их простые катионы.

Наиболее токсичными для высших растений являются медь, никель, свинец, кобальт.

Видимые симптомы токсичности изменяются в зависимости от вида растения, но имеются и общие, неспецифические симптомы фитотоксичности: хлорозные и бурые точки на листовых пластинках и их краях, а также коричневые чахлые корни кораллоподобной конфигурации.

Симптомы токсичности микроэлементов у распространенных с/х культур, согласно данным:[5]

Элемент

Симптомы

Чувствительные культуры

Бор

Хлороз краев и концов листьев,

Бурые точки на листья,

Загнивание ростовых точек,

Скручивание и отмирание старых листьев

Злаки,

Картофель,

Помидоры,

Огурцы,

Подсолнечник,

Горчица

Кобальт

Межжилковый хлороз молодых листьев,

Белые края и кончики листьев,

Уродливые кончики корней

Злаки,

Картофель,

Помидоры,

Огурцы,

Подсолнечник,

Горчица

Медь

Темно-зеленые листья,

Корни толстые, короткие или похожие на колючую проволоку,

Угнетение образования побегов

Злаки,

Бобовые,

Шпинат,

Саженцы цитрусовых, Гладиолусы

Марганец

Хлороз и некротические поражения у старых листьев,

Буровато-черные или красные некротические пятна,

Накопление частиц оксида марганца в клетках эпидермиса,

Засохшие кончики листьев,

Чахлые корни

Злаки,

Бобовые,

Картофель,

Капуста

Молибден

Пожелтение или покоричневение листьев,

Угнетение роста корней,

Угнетение кущения

Злаки

Цинк

Хлороз и некроз концов листьев,

Межжилковый хлороз молодых листьев,

Задержка роста у растения в целом,

Корни повреждены, похожи на колючую проволоку.

Злаки,

Шпинат

Содержание микроэлементов в различных соединениях

Микроудобрения – это удобрения, в которых действующим веществом является один (или несколько) микроэлементов. Они могут быть представлены как в виде минеральных форм, так и органоминеральными соединениями. Микроудобрения классифицируют по основному элементу, который они содержат (марганцевые, цинковые, медьсодержащие и прочее).

Микроэлементы могут входить и в состав макроудобрений в виде примесей. Определенное количество микроэлементов привносится в почву и в составе органических удобрений. На практике в качестве микроудобрений часто используют отходы различных производств, обогащенные микроэлементами.[2]

Способы применения микроудобрений и удобрений, содержащих микроэлементы

Микроудобрения применяют для внесения в почву, некорневых подкормок и предпосадочной обработки семян. Дозы микроудобрений малы. Это требует высокой точности дозирования и равномерности внесения.

применяется для радикального повышения содержания микроэлементов в почве на протяжении всего вегетационного периода. При этом способе могут наблюдаться отрицательные эффекты:
  • образование трудно растворимых форм микроэлементов,
  • вымывание микроэлементов за пределы корнеобитаемого слоя.

Не рекомендуется вносить в почву дорогостоящие виды микроудобрений, особенно осенью. В данном случае лучше использовать различные макроудобрения, модифицированные микроэлементами, труднодоступные промышленные отходы и удобрения пролонгированного действия.

самый распространенный способ использования микроудобрений. Этот способ технологичен и позволяет сочетать обработку семян с их посевом. Именно такая форма обработки способствует оптимизации питания растения микроэлементами на самых ранних стадиях развития. Часто обработку семян микроэлементами сочетают с применением пленкообразующих веществ, регуляторов роста и протравителей. Этот процесс носит название инкрустации семян. рекомендуется проводить при непосредственном обнаружении дефицита микроэлемента. Этот способ позволяет корректировать питание растений микроэлементами, избегая негативных последствий внесения микроудобрений в почву.[2]

Среднее содержание микроэлементов в виде примесей в минеральных удобрениях и мелиорантах, мг/кг, согласно данным:[2]

Удобрение

Бор

Молибден

Цинк

Медь

Кобальт

Марганец

Фосфофоритная мука

Месторождение Кингисеппа

Месторождения Каратау

 

 

 

9,9

 

2,1

 

1,4

30,6

 

22,5

550,0

Суперфосфат

0,4

2,0

0,7

134,8

Суперфосфат двойной

109,0

8,0

34,0

Калийная соль (сырая)

8,4

10,0

0,3

10,0

1,3

42,2

Калий хлористый

0,2

10,0

5,0

1,0

5,0

Аммиачная селитра

0,2

0,1

0,6

Аммония сульфат

6,4

0,1

15,0

9,0

25,0

0,1

Натриевая селитра

0,4

1,0

8,0

25,9

Аммофос

следы

14,5

2,9

следы

37,0

Мочевина

следы

1,3

0,9

0,7

следы

Комплексные NPK – удобрения

123,0

34,0

138,0

Известковые материалы

4,0

0,3

20,0

10,0

1,6

100,0

Эффект от применения удобрений, содержащих микроэлементы

Применение микроудобрений в сельском хозяйстве является существенным резервом повышения урожайности культурных растений. В среднем микроудобрения обеспечивают повышение урожайности на 10–12 % и более.[10]

повышают урожайность сахарной свеклы,люцерны, клевера, тимофеевки, картофеля, капусты, огурцов, томатов, синих баклажанов, плодово-ягодных, зерновых культур, хлопчатника, силосной кукурузы, а также благотворно влияют на качество продукции, повышая содержание в ней белка, сахаров, сырого протеина, жиров, клейковины, витаминов.[8]повышают урожайность и улучшают качество сельскохозяйственной продукции у таких видов культурных растений, какзерновые, лен, кормовые культуры, корнеплоды сахарной свеклы, многолетние травы, картофель на дерново-подзолистых почвах, томаты, морковь.[1] положительно влияют на урожайность и качество картофеля, бобовых культур, томата, гречихи, гороха, ячменя, овса, льна, ячменя, озимой ржи, сахарной свеклы, семян клевера, конопли, винограда и других плодово-ягодных культур, огурцов, лука, цветной капусты, салата.[1] улучшают рост и развитие, повышают содержание белка в бобовых, технических, зерновых и овощных культурах.[1]в зависимости от кислотности почв благотворно влияют на кукурузу, салат, клевер, корнеплоды сахарной свеклы, капусту, лук, персик, вишню, яблоню, землянику, виноград.[1] в малых дозах эффективно действуют на горох, лен, люцерну, горчицу, овес, пшеницу, кукурузу, бобовые культуры, красный клевер.[6]при предпосевной обработке семян способствуют повышению урожайности сахарной свеклы, хлопчатника, кукурузы, овса, подсолнечника, томата, лука, капусты, огурца. Кроме того, повышается содержание йода в растениях.[1]повышают урожайность и улучшают качество льна, конопли, сахарной свеклы, клевера, люцерны, зернобобовых, кукурузы, подсолнечника, картофеля, корневых корнеплодов, овощных культур, плодово-ягодных культур, зерновых злаков.[1]

При написании статьи использовались источники:[3][4][9]

 

Статья составлена с использованием следующих материалов:

Литературные источники:

1.

Анспок П.И. Микроудобрения: Справочник.– 2-е издание, переработанное и дополненное.– Л.: Агропромиздат. Ленинградское отделение, 1990.– 272 с.

2.

Битюцкий Н.П. Микроэлементы и растение. Учебное пособие. – СПб.: Издательство Санкт-петербургского университета, 1999. – 232 с.

3.

Глинка Н.Л. Общая химия. Учебник для ВУЗов. Изд: Л: Химия, 1985 г, с 731

4.

Жеребцов Н. А., Попова Т. Н., Артюхов В. Г. Биохимия. — Воронеж: Издательство Воронежского государственного университета, 2002. — 696с.

5.

Кабата-Пендиас А., Пендиас Х. Микроэлементы в почвах и растениях: Перевод с англиского.– М.: Мир, 1989.– 439 с., ил.

6.

Каталымов М.В. Микроэлементы и микроудобрения.– М.: Издательство «Химия», 1965.– 332 с.

7.

Краткая химическая энциклопедия, Главный редактор Н.Л. Кнунянц,  Москва, 1964

8.

Минеев В.Г. Агрохимия: Учебник.– 2-е издание, переработанное и дополненное.– М.: Издательство МГУ, Издательство «КолосС», 2004.– 720 с., [16] л. ил.: ил. – (Классический университетский учебник).

9.

Химическая энциклопедия:  в пяти томах: т.1: А-Дарзана/Редкол.: Кнунянц И.Л. (гл. ред.) и др. – М.: Советская энциклопедия, 1988. – 623.: ил

10.

Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия / Под редакцией Б.А. Ягодина.– М.: Колос, 2002.– 584 с.: ил (Учебники и учебные пособия для студентов высших учебных заведений).

Изображения (переработаны):

11.12.13.14.15.

Zinc deficiency, by  Donald Groth, Louisiana State University AgCenter, Bugwood.org, по лицензии CC BY

Свернуть Список всех источников

Урок 5. химический состав клетки — Биология — 5 класс

Биология, 5 класс

Урок 5. Химический состав клетки

Перечень вопросов, рассматриваемых на уроке:

  1. Урок посвящён изучению химического состава клетки.

Ключевые слова:

Клетка, химический состав, неорганические и органические вещества, вода, минеральные соли, белки, жиры, углеводы, нуклеиновые кислоты

Тезаурус:

Химический элемент – это атомы одного и того же вида.

Органические вещества – это вещества, которые входят в состав живых организмов и образуются только при их участии.

Неорганические вещества – это вещества, которые входят в состав неживой природы и могут образовываться без участия живых организмов.

Обязательная и дополнительная литература по теме

  1. Биология. 5–6 классы. Пасечник В. В., Суматохин С. В., Калинова Г. С. и др. / Под ред. Пасечника В. В. М.: Просвещение, 2019
  2. Биология. 6 класс. Теремов А. В., Славина Н. В. М.: Бином, 2019.
  3. Биология. 5 класс. Мансурова С. Е., Рохлов В. С., Мишняева Е. Ю. М.: Бином, 2019.
  4. Биология. 5 класс. Суматохин С. В., Радионов В. Н. М.: Бином, 2014.
  5. Биология. 6 класс. Беркинблит М. Б., Глаголев С. М., Малеева Ю. В., Чуб В. В. М.: Бином, 2014.
  6. Биология. 6 класс. Трайтак Д. И., Трайтак Н. Д. М.: Мнемозина, 2012.
  7. Биология. 6 класс. Ловягин С. Н., Вахрушев А. А., Раутиан А. С. М.: Баласс, 2013.

Теоретический материал для самостоятельного изучения

Сейчас на Земле известно более ста химических элементов. Из их атомов состоят все вещества, встречающиеся на Земле. 80 химических элементов обнаружены в составе живых организмов. При этом четыре из них – углерод, водород, азот и кислород составляют около 98 % массы любого организма. Остальные химические элементы встречаются в живых организмах в малых количествах.

Клетки всех живых организмов состоят из одних и тех же химических элементов. Эти же элементы входят и в состав объектов неживой природы. Сходство состава указывает на общность живой и неживой природы.

На этом уроке вы узнаете, из каких химических элементов состоят клетки живых организмов, и какие изменения претерпевают эти химические соединения по мере роста и развития клеток.

В клетках живых организмов больше всего содержится таких химических элементов, как углерод, водород, кислород и азот. Вместе они составляют до 98 % массы клетки. Около 2 % массы клетки приходится на восемь элементов: калий, натрий, кальций, хлор, магний, железо, фосфор и серу. Остальные химические элементы содержатся в клетках в очень малых количествах.

Химические элементы, соединяясь между собой, образуют неорганические (вода и минеральные соли) и органические (белки, жиры, углеводы, нуклеиновые кислоты и др.) вещества.

Значение каждого из веществ, содержащегося в клетке уникально. Вода придаёт клетке упругость, определяет её форму, участвует в обмене веществ. Неорганические вещества используются для синтеза органических молекул. При недостатке минеральных веществ важнейшие процессы жизнедеятельности клеток нарушаются. Углеводы придают прочность клеточным оболочкам, а также служат запасающими веществами. Белки входят в состав разнообразных клеточных структур, регулируют процессы жизнедеятельности и тоже могут запасаться в клетках. Жиры откладываются в клетках. При расщеплении жиров освобождается необходимая живым организмам энергия. Нуклеиновые кислоты играют ведающую роль в сохранении наследственной информации.

Клетка – это миниатюрная природная лаборатория, в которой синтезируются и претерпевают изменения различные химические соединения. Сходство химического состава клеток разных организмов доказывает единство живой природы.

Разбор типового тренировочного задания:

Тип задания: Сортировка элементов по категориям

Текст вопроса: Расставьте названия веществ в таблицу:

Органические вещества

Неорганические вещества

Варианты ответов:

Белки

Вода

Углеводы

Жиры

Кислород

Правильный вариант ответа:

Органические вещества

Неорганические вещества

белки

углеводы

жиры

вода

кислород

Разбор типового контрольного задания

Тип задания: Выделение цветом

Текст вопроса: Выделите цветом вещества, входящие в состав живых организмов:

Варианты ответов:

  1. Вода
  2. Пластик
  3. Белки
  4. Жиры
  5. Нефть
  6. Углеводы
  7. ДНК и РНК

Правильный вариант ответа:

1) Вода

3) Белки

4) Жиры

6) Углеводы

7) ДНК и РНК

Роль йода в организме,

25 июня 2019 г.

Йод относится к жизненно важным микроэлементам питания: суточная потребность в нем в зависимости от возраста составляет от 100 до 200 мкг (1 мкг – это 1 миллионная часть грамма), а за всю жизнь человек потребляет около 3-5 граммов йода, что эквивалентно содержимому примерно одной чайной ложки. Для образования необходимого количества гормонов требуется и достаточное поступление йода в организм. Ежедневная потребность в йоде зависит от возраста и физиологического состояния.

Нормы ежедневного потребления йода

— 50 мкг для детей грудного возраста (первые 12 месяцев)

— 90 мкг для детей младшего возраста (от 2 до 6 лет)

— 120 мкг для детей школьного возраста (от 7 до 12 лет)

— 150 мкг для взрослых (от 12 лет и старше)

— 200 мкг для беременных и кормящих женщин

Краткая характеристика проблемы

Йод — микроэлемент, необходимый для нормального роста и развития человека и животных. Попадая в организм, йод избирательно накапливается в щитовидной железе, где проходит сложный путь превращений и становится составной частью тиреоидных гормонов: тироксина и трийодтиронина. Тиреоидные гомоны регулируют скорость обмена веществ в организме, участвуют в работе всех органов и систем.

Самым распространенным проявлением йодной недостаточности является зоб. Однако современные знания позволяют выделить целый ряд заболеваний, обусловленных влиянием йодной недостаточности на рост и развитие организма. В йоддефицитных регионах у женщин нарушается репродуктивная функция, увеличивается количество выкидышей и мертворождений, повышается перинатальная и детская смертность. Дефицит тиреоидных гормонов у плода и в раннем детском возрасте может привести к необратимому снижению умственного развития, вплоть до кретинизма. От дефицита йода страдает не только мозг ребенка, но и согласно многочисленных исследований, его слух, зрительная память и речь. Недостаток йода может сказаться на работе жизненно важных органов и привести к задержке физического развития.

Очевидно, наиболее неблагоприятные последствия возникают на ранних этапах становления организма, начиная от внутриутробного периода и завершаясь возрастом полового созревания. В настоящее время известен целый ряд заболеваний обусловленных влиянием йодной недостаточности в различные периоды жизни.

Последствия йодной недостаточности

Дородовый период: аборты, мертворождения, врожденные аномалии, повышенная смертность в родах, эндемический кретинизм;

Послеродовой период, раннее детство: неонатальный зоб, явный или субклинический гипотиреоз, нарушения умственного и физического развития;

Детский и подростковый период: эндемический зоб (диффузный, узловой), явный или субклинический гипотиреоз, нарушения умственного и физического развития;

Взрослые: зоб (диффузный, узловой) и его осложнения, гипотиреоз, умственные нарушения, нарушения репродуктивной системы: инфертильность и импотенция, опухоли гипофиза, синдром пустого турецкого седла, ранний климакс;

 

Почему для обогащения йодом избрана именно соль?

  • Соль используется ежедневно, значит йод будет поступать в организм постоянно;
  • Соль использует все, независимо от материального достатка, пола, возраста и образования;
  • Соль употребляют в малых количествах, так что невозможно передозировать содержание йода в организме;
  • Стоимость йодированной соли практически не отличается от обычной соли. Йодированную соль могут купить все: от пенсионеров до молодых людей.

 

Ошибки и заблуждения йодной профилактики

ЗАБЛУЖДЕНИЯ

 

ФАКТЫ

Потребление йодированной соли может вызвать аллергическую реакцию

 

В медицинской практике случаев аллергических реакций на йодированную соль не наблюдалось

Потребление йодированной соли способно индуцировать аутоиммунный тиреоидит

 

При потреблении физиологических количеств йода риск развития аутоиммунных заболеваний щитовидной железы не увеличивается

Йодированная соль не пригодна для засолки овощей и других продуктов

 

Специальные исследования во многих странах показали, что йодированная соль не влияет на качество консервирования

Регулярное потребление морской рыбы достаточно для профилактики йоддефицита

 

Регулярные потребления морской рыбы и морепродуктов весьма полезно, но недостаточно для полного обеспечения организма йодом. Используйте для приготовления йодированную соль

Для профилактики ЙДЗ можно использовать спиртовой раствор йода и раствор Люголя

 

Это делать не нужно. Капля раствора Люголя содержит почти полугодовую дозу йода, лучше купить йодированную соль

Перепонки грецкого ореха, хурма, фейхоа и некоторые другие фрукты содержат много йода

 

 

За редким исключением почвы резко обеднены йодом. Растения не способны концентрировать его, и их плоды, листья, корни не содержат повышенного количества йода

Йодированная соль показана всем без исключения жителям нашей страны, где существует природный дефицит йода и поступление его с пищей и водой снижено. Йодированная соль – это не лекарство, а продукт питания. Для ее покупки в магазине не нужно рецептов. Надо просто приобретать йодированную соль вместо обычной и использовать ее и для приготовления блюд, и для присаливания пищи

Сокращение потребления соли

Наращивание производства пищевых продуктов все более глубокой переработки, быстрая урбанизация и изменение образа жизни меняют тенденции в области питания. Доступность и ценовая приемлемость продуктов, прошедших глубокую технологическую переработку, повышаются. Во всем мире население потребляет все больше высококалорийной пищи со значительным содержанием насыщенных жиров, трансжиров, сахаров и соли. Соль является основным источником натрия, при этом установлена связь между повышенным потреблением натрия и гипертонией, а также увеличением риска сердечно-сосудистых заболеваний и инсульта.

Одновременно, по мере отхода от привычных схем питания снижается потребление ключевых составляющих здорового рациона — фруктов, овощей и пищевых волокон (в частности, цельных злаков). Фрукты и овощи содержат калий, способствующий снижению кровяного давления.

Роль переработанных пищевых продуктов как источника соли в рационе объясняется тем, что содержание соли в них особенно высоко (в случае готовых блюд, мясопродуктов, таких как бекон, ветчина и сырокопченая колбаса, сыров, соленых снеков, лапши быстрого приготовления и т.д.), а также тем, что они потребляются часто и в больших количествах (в случае хлеба и переработанных зерновых продуктов). Соль также добавляется в пищу во время приготовления (в виде бульонных кубиков) или уже на столе (в виде соевого или рыбного соуса и пищевой соли).

Вместе с тем многие производители меняют рецептуру своей продукции для сокращения содержания соли, и потребителям рекомендуется обращать внимание на этикетки продуктов и выбирать продукты с низким содержанием натрия.

Рекомендации по снижению потребления соли

  • Взрослые. ВОЗ рекомендует взрослым потреблять менее 5 г соли в день (чуть меньше одной чайной ложки) (1).
  • Дети. Для детей в возрасте от двух до 15 лет ВОЗ рекомендует корректировать рекомендованное максимальное потребление соли в сторону уменьшения исходя из их потребностей в энергии по сравнению с взрослыми. Эта рекомендация в отношении детей не охватывает период исключительно грудного вскармливания (0–6 месяцев) или период прикорма при продолжающемся грудном вскармливании (6–24 месяца).
  • Вся потребляемая соль должна быть йодированной, т.е. обогащенной йодом, который имеет важнейшее значение для здорового развития головного мозга у плода и у детей младшего возраста и общего укрепления психических функций у всех людей.

Информация о соли, натрии и калии

  • Натрий является важнейшим биогенным элементом, необходимым для поддержания объема плазмы крови и водно-щелочного баланса, передачи нервных импульсов и нормального функционирования клеток.
  • Избыток натрия сопровождается негативными последствиями для здоровья, в том числе повышением кровяного давления.
  • Основные источники потребления натрия в пище определяются культурными особенностями и кулинарными предпочтениями населения.
  • Натрий естественным образом содержится в целом ряде продуктов питания, таких как молоко, мясо и морепродукты. Он нередко встречается в большом количестве в переработанных пищевых продуктах, таких как хлебобулочные изделия, мясопродукты и снеки, а также во вкусовых добавках к пище (например, соевом и рыбном соусах).
  • Натрий содержится также в глутамате натрия, который используется в качестве пищевой добавки во многих регионах мира.
  • Калий — важнейший микроэлемент, необходимый для поддержания общего объема жидкостей в организме, кислотного и водно-электролитного баланса и нормального функционирования клеток.
  • Калий содержится в самых разнообразных необработанных пищевых продуктах, особенно фруктах и овощах.
  • Установлено, что увеличение потребления калия снижает систолическое и диастолическое давление у взрослых людей.

Как сократить потребление соли с продуктами питания

Государственная политика и стратегии должны обеспечивать создание условий, позволяющих населению потреблять достаточное количество безопасных и питательных продуктов, составляющих основу здорового рациона, к которым относятся продукты с низким содержанием соли. Оздоровление привычек в области питания является обязанностью не только общества, но и каждого человека. Эта задача должна решаться с учетом характеристик и культурных особенностей населения и с участием целого ряда секторов.

Можно выделить следующие ключевые стратегии общего характера по сокращению потребления соли:

  • политика государства, в том числе надлежащая налоговая политика и регулирование, обеспечивающие поставку производителями и розничными предприятиями более здоровых продуктов питания и расширение ассортимента доступной и недорогой здоровой пищевой продукции;
  • взаимодействие с частным сектором для обеспечения поставок и повышения доступности продуктов с низким содержанием соли;
  • информирование и расширение прав и возможностей потребителей методами социального маркетинга и мобилизации для повышения их осведомленности о необходимости сокращать потребление соли;
  • создание благоприятных предпосылок для сокращения потребления соли за счет инициатив в области местной политики и содействие формированию «сред здорового питания», в частности на уровне школ, общин и городов;
  • мониторинг потребления соли населением, источников соли в рационе питания, а также уровня осведомленности, установок и поведения людей в отношении этой проблемы для учета полученных данных при принятии решений о мерах политики.

Программы сокращения потребления соли и программы, направленные на обогащение соли, вкусовых добавок и приправ с высоким содержанием соли (бульонных кубиков, соевого и рыбного соусов) питательными микроэлементами, могут дополнять друг друга.

Потребление соли дома можно сократить, если:

  • не солить блюда во время их приготовления;
  • не держать на обеденном столе солонку;
  • ограничить потребление соленых снеков;
  • выбирать продукты с низким содержанием натрия.

Сокращению потребления соли способствует целый ряд других практических мер местного уровня:

  • включение вопросов сокращения потребления соли в программы обучения работников пищевой промышленности и общественного питания;
  • изъятие солонок и соевого соуса со столов на предприятиях общественного питания; размещение уведомлений о том, что определенная продукция содержит много натрия на упаковке или на полках магазинов;
  • предоставление специальных рекомендаций в отношении питания посетителям учреждений здравоохранения;
  • разъяснительная работа о необходимости сокращения потребления соли и ограниченном ее использовании при приготовлении пищи;
  • разъяснительная работа с детьми и создание для детей обстановки, способствующей формированию у них привычки к низкосолевому рациону уже в молодом возрасте.

Действия пищевой промышленности должны включать в себя:

  • постепенное сокращение содержания соли в продукции с течением времени, с тем чтобы потребители привыкли к ее вкусу постепенно, не переходя на альтернативную продукцию;
  • пропаганду преимуществ употребления продуктов питания с пониженным содержанием соли в рамках информационных мероприятий для потребителей на предприятиях общественного питания и в магазинах;
  • сокращение содержания соли в пищевых продуктах и блюдах, предлагаемых ресторанами и службами питания, и указание содержания натрия в них.

Заблуждения о сокращении потребления соли

  • «В жаркий и влажный день человек потеет, и в его пище должно быть больше соли». Потея, организм теряет совсем немного соли, поэтому даже в условиях жары и высокой влажности лишняя соль не нужна; однако важное значение имеет обильное питье.
  • Морская соль не «полезнее» промышленно произведенной лишь потому, что «создана природой». Независимо от происхождения соли, негативные последствия для здоровья вызывает содержащийся в ней натрий.
  • Добавление соли при приготовлении пищи — не основной источник потребляемой соли. Во многих странах примерно 80% соли в рационе потребляется в составе промышленно переработанных пищевых продуктов.
  • Чтобы придать пище приятный вкус, не обязательно использовать соль. Вкусовые рецепторы человека адаптируются не сразу, но, привыкнув к пониженному потреблению соли, он с большей вероятностью будет получать удовольствие от пищи и чувствовать более широкий диапазон вкусов.
  • «Пища без соли кажется пресной». Поначалу это может быть и так, однако вскоре вкусовые рецепторы адаптируются к уменьшению содержания соли, и человек привыкает ценить менее соленую, но более выраженную во вкусовом отношении пищу.
  • «Пища, в которой много соли, соленая на вкус». Некоторые продукты питания с высоким содержанием соли не имеют выраженного соленого вкуса, потому что он сочетается с другими, маскирующими соленость ингредиентами, например, сахарами. Чтобы выяснить содержание натрия в продуктах питания, необходимо обращать внимание на этикетки.
  • «Беспокоиться о количестве потребляемой соли стоит только пожилым людям». Избыточное потребление соли может приводить к повышению кровяного давления у лиц любого возраста.
  • «Сокращение потребления соли может плохо повлиять на мое здоровье». Потреблять слишком мало соли очень трудно, потому что она содержится в большом количестве повседневных продуктов питания.

Деятельность ВОЗ

В руководствах ВОЗ о потреблении натрия и калия определены предельные значения их потребления без ущерба для здоровья. В руководствах также описываются меры по оздоровлению питания и профилактике НИЗ у взрослых и детей.

В 2004 г. Всемирная ассамблея здравоохранения приняла Глобальную стратегию по питанию, физической активности и здоровью. Она содержит призыв к правительствам, ВОЗ, международным партнерам, частному сектору и гражданскому обществу принимать меры в поддержку здорового питания и физической активности на глобальном, региональном и местном уровнях.

В 2010 г. Всемирная ассамблея здравоохранения одобрила свод рекомендаций в отношении маркетинга продуктов питания и безалкогольных напитков, ориентированного на детей. Рекомендации служат странам ориентиром при выработке новых и укреплении существующих мер политики по уменьшению негативных последствий маркетинга вредных для здоровья продуктов питания для детей. ВОЗ также содействует разработке модели профилей питательных веществ, которая может использоваться странами в качестве инструмента при выполнении рекомендаций, касающихся маркетинга.

В 2011 г. мировые лидеры взяли на себя обязательство сокращать негативное воздействие нездорового питания на людей. Данное обязательство было провозглашено в Политической декларации Совещания высокого уровня Генеральной Ассамблеи по профилактике НИЗ и борьбе с ними.

В 2012 г. Всемирная ассамблея здравоохранения утвердила шесть глобальных целей в области питания, включающих сокращение числа детей, страдающих задержкой роста, истощением и ожирением, повышение показателей грудного вскармливания и уменьшение числа случаев анемии и низкой массы тела при рождении.

В 2013 г. Всемирная ассамблея здравоохранения согласовала девять глобальных добровольных целей в области профилактики НИЗ и борьбы с ними, которые, в частности, предусматривают прекращение распространения диабета и ожирения, а также сокращение потребления соли на 30% к 2025 г. Глобальный план действий по профилактике неинфекционных заболеваний и борьбе с ними на 2013–2020 гг. содержит руководящие указания и набор вариантов политики для достижения этих целей государствами-членами, ВОЗ и другими учреждениями ООН.

В мае 2014 г., ввиду быстрого роста распространенности ожирения среди младенцев и детей, ВОЗ учредила комиссию по ликвидации детского ожирения. Комиссия подготовила доклад за 2015 г., в котором уточнила, какие подходы и действия с большой вероятностью будут наиболее эффективны в условиях различных стран мира.

 


(1) Эти рекомендации применимы ко всем лицам, независимо от того, страдают ли они повышенным кровяным давлением (включая беременных и кормящих грудью женщин), за исключением лиц, которые страдают заболеваниями или принимают лекарства, которые могут приводить к снижению уровня натрия или резкому накоплению воды в организме, либо лиц, нуждающихся в специальной диете под наблюдением врача (например, пациентов с сердечной недостаточностью или диабетом первого типа). Для этих подгрупп населения может быть установлена специфическая взаимосвязь между потреблением натрия и показателями здоровья (Руководство ВОЗ о потреблении натрия для взрослых и детей, 2012 г.).

 

 

Почему витаминные добавки не приносят пользы и могут быть смертельно опасны

  • Алекс Райли
  • BBC Future

Автор фото, Thinkstock

Мы глотаем антиоксиданты так, словно это волшебный эликсир, способный продлить нам жизнь. Однако в лучшем случае они просто неэффективны, а в худшем — могут сократить наш земной путь. Обозреватель BBC Future рассказывает, почему.

Лайнус Полинг совершил серьезную ошибку, когда решил кое-что изменить в своем традиционном завтраке.

В 1964 году, в возрасте 65 лет, он начал добавлять витамин C в апельсиновый сок, который пил по утрам.

Это все равно, что добавлять сахар в кока-колу, но он искренне и даже слишком рьяно верил в то, что это полезно.

До этого его завтраки вряд ли можно было назвать необычными. Особого упоминания заслуживает лишь то, что завтракал он рано утром перед тем, как отправиться на работу в Калифорнийский технологический университет, даже по выходным.

Он был неутомим, а его работа отличалась исключительной плодотворностью.

В возрасте 30 лет, например, он предложил третий фундаментальный закон взаимодействия атомов в молекулах, основанный на принципах химии и квантовой механики.

Двадцать лет спустя его работа о структуре белков (строительного материала для всего живого) помогла Фрэнсису Крику и Джеймсу Уотсону в 1953 году расшифровать структуру ДНК (кодирующей этот материал).

В следующем году Полинг был удостоен Нобелевской премии в области химии за свои исследования природы химических связей.

Ник Лэйн, биохимик из Университетского колледжа Лондона, в 2001 году написал о нем в своей книге «Кислород»: «Полинг …был колоссом науки XX века, чьи труды заложили основы современной химии».

Автор фото, Getty Images

Подпись к фото,

Лайнус Полинг был одним из влиятельнейших ученых, однако его вера в силу антиоксидантов, возможно, подвергает наши жизни опасности

Но затем началась «эпоха витамина C». В своем бестселлере 1970 года под названием «Как прожить дольше и чувствовать себя лучше» Полинг заявлял, что дополнительный прием этого витамина помогает справиться с простудой.

Он принимал 18 000 мг (18 г) этого вещества в день, а это, между прочим, в 50 раз выше рекомендованной дневной нормы.

Во втором издании этой книги в список болезней, с которыми эффективно борется витамин C, был добавлен и грипп.

В 1980-х годах, когда в США начал распространяться ВИЧ, Полинг заявил, что витамин C может вылечить и от этого вируса.

В 1992 году о его идеях написал журнал Time, на обложке которого красовался заголовок: «Реальная сила витаминов». Их преподносили как лекарство от сердечно-сосудистых заболеваний, катаракты и даже рака.

«Еще более заманчивы предположения о том, что витамины способны замедлить процесс старения», — говорилось в статье.

Продажи мультивитаминов и других пищевых добавок взлетели вверх, равно как и слава Полинга.

Однако его научная репутация, наоборот, пострадала. Научные исследования, проведенные в течение нескольких следующих лет, практически не подтвердили пользу витамина C и многих других пищевых добавок.

На самом деле, каждая ложка витамина, которую Полинг добавлял в свой апельсиновый сок, скорее вредила, а не помогала его организму.

Наука не только опровергла его суждения, но и нашла их довольно опасными.

Автор фото, Getty Images

Подпись к фото,

Считалось, что антиоксиданты замедляют старение, но доказательств реальной пользы пищевых добавок явно недостаточно

Теории Полинга основывались на том, что витамин C относится к антиоксидантам — особой категории природных соединений, к которой также принадлежат витамин E, бета-каротин и фолиевая кислота.

Они нейтрализуют чрезвычайно активные молекулы, известные как свободные радикалы, и поэтому считаются полезными.

В 1954 году Ребекка Гершман, в то время работавшая в Рочестерском университете, штат Нью-Йорк, впервые выявила связанную с этими молекулами опасность.

В 1956 году ее гипотезу развил Денхам Харман из Лаборатории медицинской физики при Калифорнийском университете в Беркли, заявивший, что свободные радикалы — это причина разрушения клеток, различных болезней и, в конечном итоге, старения.

На протяжении всего XX века ученые продолжали исследовать эту тему, и вскоре идеи Хармана получили всеобщее признание.

Вот как это работает. Процесс начинается с митохондрий, микроскопических двигателей внутри наших клеток.

Внутри их мембран питательные вещества и кислород перерабатываются в воду, углекислый газ и энергию.

Так происходит клеточное дыхание — механизм, служащий источником энергии для всех сложных форм жизни.

«Протекающие водяные мельницы»

Но все не так просто. Помимо питательных веществ и кислорода, для этого процесса необходим постоянный поток отрицательно заряженных частиц — электронов.

Поток электронов проходит через четыре белка, находящиеся в мембранах митохондрии, которые можно сравнить с водяными мельницами. Так он участвует в производстве конечного продукта — энергии.

Эта реакция лежит в основе всей нашей деятельности, однако она не совершенна.

Электроны могут «утекать» из трех клеточных мельниц и вступать в реакции с находящимися поблизости молекулами кислорода.

В результате образуются свободные радикалы — очень активные молекулы со свободным электроном.

Чтобы вернуть стабильность, свободные радикалы наносят серьезный ущерб окружающим их системам, забирая электроны у жизненно важных молекул, таких как ДНК и белки, — для поддержания собственного заряда.

Харман и многие другие утверждали, что, несмотря на свой малый масштаб, образование свободных радикалов постепенно наносит вред всему организму, вызывая мутации, приводящие к старению и таким связанным с ним болезням, как рак.

Коротко говоря, кислород — это источник жизни, но он также может быть фактором старения, заболеваний и, наконец, смерти.

Автор фото, Thinkstock

Подпись к фото,

Клиническое испытание — это единственный способ проверить то, как действует лекарственный препарат, и в случае с антиоксидантами получены шокирующие результаты

Как только свободные радикалы связали со старением и болезнями, их стали рассматривать как врагов, которых необходимо изгнать из нашего организма.

В 1972 году, к примеру, Харман написал: «Снижение количества [свободных радикалов] в организме, как ожидается, позволит снизить темпы биологического распада, тем самым дав человеку дополнительные годы здоровой жизни. Надеемся, что [эта теория] приведет к плодотворным экспериментам, направленным на повышение продолжительности здоровой жизни человека».

Он говорил об антиоксидантах — молекулах, принимающих электроны у свободных радикалов и снижающих уровень исходящей от них угрозы.

А эксперименты, на которые он надеялся, тщательно проводились и многократно повторялись в течение нескольких десятков лет. Однако их результаты были не очень убедительны.

Так, например, в 1970-х и 80-х годах различные добавки, содержащие антиоксиданты, давали мышам — самым распространенным лабораторным животным — с кормом или посредством инъекции.

Некоторые из них даже подверглись генетической модификации, чтобы гены, отвечающие за определенные антиоксиданты, были более активными, чем у обычных лабораторных мышей.

Ученые применяли различные методы, однако получали очень похожие результаты: избыток антиоксидантов не замедлял старение и не предотвращал заболевания.

«Никому не удалось достоверно доказать, что они (антиоксиданты — Ред.) способны продлить жизнь или улучшить здоровье, — говорит Антонио Энрикес из Национального центра исследований сердечно-сосудистых заболеваний в Мадриде, Испания. — На добавки мыши почти не реагировали».

Автор фото, Thinkstock

Подпись к фото,

Одно из исследований показало, что витаминные добавки не только не защищают от болезней, но и повышают уровень заболеваемости раком среди курильщиков

А как насчет людей? В отличие от братьев наших меньших, членов нашего общества ученые не могут поместить в лаборатории, чтобы отслеживать состояние их здоровья на протяжении всей жизни, а также исключить все внешние факторы, которые могут повлиять на итоговый результат.

Единственное, что они могут сделать, — это организовать долгосрочное клиническое исследование.

Его принцип очень прост. Сначала нужно найти группу людей примерно одинакового возраста, живущих в одной местности и ведущих схожий образ жизни. Затем нужно разделить их на две подгруппы.

Первая из них получает добавку, которую необходимо протестировать, в то время как вторая — таблетку-пустышку, или плацебо.

Для обеспечения чистоты эксперимента до завершения исследования никто не должен знать, что именно получают участники — даже те, кто выдает таблетки.

Этот метод, известный как двойное слепое исследование, считается эталоном фармацевтических исследований.

Начиная с 1970-х годов ученые провели немало подобных экспериментов, пытаясь выяснить, каким образом антиоксидантные добавки влияют на наше здоровье и продолжительность жизни. Результаты оказались неутешительными.

Так, например, в 1994 году в Финляндии было организовано исследование с участием 29 133 курильщиков в возрасте от 50 до 60 лет.

В группе, принимавшей пищевые добавки с бета-каротином, заболеваемость раком легких увеличилась на 16%.

Схожие результаты дало американское исследование с участием женщин, вступивших в период постменопаузы.

Они принимали фолиевую кислоту (разновидность витамина B) каждый день на протяжении 10 лет, и после этого риск рака груди у них увеличился на 20% по сравнению с теми, кто не принимал эту добавку.

Дальше все было только хуже. Исследование с участием более 1000 заядлых курильщиков, опубликованное в 1996 году, пришлось прекратить примерно на два года раньше назначенного срока.

По прошествии всего четырех лет приема добавок с бета-каротином и витамином A число случаев рака легких увеличилось на 28%, а число смертей — на 17%.

И это не просто цифры. В группе, принимавшей добавки, каждый год умирало на 20 человек больше, чем в группе, принимавшей плацебо.

Это значит, что за четыре года исследования умерло на 80 человек больше.

Его авторы отметили: «Результаты исследования дают веские основания для отказа от приема добавок с бета-каротином, а также бета-каротина в сочетании с витамином A».

Фатальные идеи

Само собой, эти достойные внимания исследования не дают нам полной картины. Некоторые испытания все же доказывали пользу антиоксидантов, особенно в случаях, когда их участники не имели возможности питаться правильно.

Тем не менее выводы научного обзора 2012 года, составленного на основе 27 клинических испытаний эффективности различных антиоксидантов, свидетельствуют не в пользу последних.

Лишь в семи исследованиях прием добавок был в какой-то степени полезен для здоровья: снизился риск заболеваний сердечно-сосудистой системы и рака поджелудочной железы.

Десять исследований не показали никакой пользы антиоксидантов — результаты были такими, как будто все пациенты получали плацебо (хотя на самом деле это, конечно, было не так).

Итоги оставшихся 10 исследований свидетельствовали о том, что многие пациенты находились в заметно более худшем состоянии, чем до приема антиоксидантов. Кроме того, среди них увеличилась заболеваемость раком легких и раком груди.

«Предположение о том, что добавки с антиоксидантами — это волшебное лекарство, не имеет под собой совершенно никаких оснований», — утверждает Энрикес.

Лайнус Полинг даже не подозревал, что его собственные идеи могут быть смертельно опасными.

В 1994 году, еще до опубликования результатов многочисленных крупномасштабных клинических исследований, он умер от рака простаты.

Витамин C вовсе не был панацеей, хотя Полинг до самого последнего вздоха упорно настаивал на этом. Но связано ли его повышенное потребление с дополнительными рисками?

Вряд ли мы когда-нибудь узнаем это наверняка. Тем не менее, учитывая то, что многие испытания связывают прием антиоксидантов с раком, это не исключено.

К примеру, исследование специалистов Национального института онкологии США, опубликованное в 2007 году, показало, что у мужчин, принимавших мультивитамины, риск умереть от рака простаты был в два раза выше, чем у тех, кто этого не делал.

Автор фото, Thinkstock

Подпись к фото,

Прием дополнительных доз витамина C не защитит даже от обычной простуды

А в 2011 году похожее исследование с участием 35 533 здоровых мужчин выявило, что прием добавок с витамином E и селеном увеличивал риск рака простаты на 17%.

С тех пор как Харман предложил свою знаменитую теорию о свободных радикалах и старении, ученые стали постепенно отказываться от четкого разделения антиоксидантов и свободных радикалов (оксидантов). Сейчас оно считается устаревшим.

Антиоксидант — это всего лишь название, которое не отражает природу того или иного вещества в полной мере.

Возьмем, например, столь любимый Полингом витамин C. При правильной дозировке он нейтрализует высокоактивные свободные радикалы, забирая у них свободный электрон.

Он становится «молекулярным мучеником», принимая удар на себя и защищая окружающие его клетки.

Однако, приняв электрон, он сам становится свободным радикалом, способным повредить клеточные мембраны, белки и ДНК.

Как в 1993 году написал химик пищевой промышленности Уильям Портер, «[витамин C] — это настоящий двуликий Янус, доктор Джекил и мистер Хайд, оксюморон антиоксидантов».

К счастью, в нормальных обстоятельствах фермент редуктаза способен вернуть витамину C его антиоксидантный облик.

Но что, если витамина C так много, что фермент просто не успевает справляться с ним?

Несмотря на то, что такое упрощение сложных биохимических процессов не способно отразить всю суть проблемы, результаты вышеуказанных клинических исследований свидетельствуют о том, к чему это может привести.

Разделяй и властвуй

У антиоксидантов есть своя темная сторона. Кроме того, даже их светлая сторона не всегда действует нам во благо — в свете появления все большего количества доказательств того, что свободные радикалы также важны для нашего здоровья.

Сейчас мы знаем, что свободные радикалы часто выполняют функцию молекулярных передатчиков, отправляющих сигналы из одной части клетки в другую. Так они регулируют процессы роста, деления и гибели клетки.

На каждом этапе существования клетки свободные радикалы играют очень важную роль. Без них клетки продолжали бы расти и делиться бесконтрольно — это процесс и называют раком.

Без свободных радикалов мы также чаще заражались бы инфекциями. В условиях стресса, вызванного проникновением в организм человека нежелательных бактерий или вирусов, свободные радикалы начинают вырабатываться более активно, действуя как бесшумный сигнал для иммунной системы.

В результате клетки, стоящие в авангарде нашей иммунной защиты — макрофаги и лимфоциты — начинают делиться и бороться с возникшей проблемой. Если это бактерия, они проглотят ее, как Пакман синее привидение в популярной компьютерной игре.

Бактерия окажется в ловушке, но будет еще жива. Чтобы исправить это, свободные радикалы вновь вступают в дело.

Внутри иммунной клетки они используются как раз для того, из-за чего получили плохую репутацию: для убийства и разрушения. Незваного гостя разрывают на кусочки.

С самого начала и до конца здоровая иммунная реакция зависит от наличия в организме свободных радикалов.

Генетики Жуан Педру Магальяйнш и Джордж Черч написали в 2006 году: «Огонь опасен, однако люди научились использовать его себе во благо. Точно так же и клетки, по-видимому, смогли развить механизмы контроля и использования [свободных радикалов]».

Другими словами, избавляться от свободных радикалов при помощи антиоксидантов не стоит.

«В таком случае мы будем беззащитны перед некоторыми инфекциями», — подчеркивает Энрикес.

Автор фото, Getty Images

Подпись к фото,

Мало кто сомневается в том, что для поддержания хорошего здоровья необходимо сбалансированное питание, но большинству из нас для удовлетворения пищевых потребностей не нужны добавки

К счастью, в организме человека есть системы, отвечающие за поддержание стабильности биохимических процессов.

В случае с антиоксидантами их излишек удаляется из кровотока в мочу. «Они просто выводятся из организма естественным путем», — говорит Клева Виллануэва из Национального политехнического института Мехико.

«Человеческий организм обладает невероятной способностью приводить все в равновесие, поэтому последствия [приема добавок] в любом случае будут умеренными, и мы должны быть благодарны за это», — отмечает Лэйн.

К рискам, связанным с кислородом, мы начали приспосабливаться еще тогда, когда первые микроорганизмы начали дышать этим токсичным газом, и изменить то, что создавалось за миллиарды лет эволюции, простая пилюля не в силах.

Никто не станет отрицать, что витамин C — это неотъемлемая часть здорового образа жизни, равно как и все антиоксиданты.

Но, за исключением случаев, когда эти добавки прописаны врачом, здоровое питание все же является лучшим способом продлить себе жизнь.

«Прием антиоксидантов оправдан только тогда, когда в организме наблюдается реальный дефицит конкретного вещества, — говорит Виллануэва. — Лучше всего получать антиоксиданты из продуктов питания, которые содержат определенный набор антиоксидантов, действующих в комплексе».

«Рацион, богатый фруктами и овощами, как правило, очень полезен, — говорит Лэйн. — Не всегда, но в большинстве случаев это так».

Несмотря на то, что преимущества такого питания часто приписывают антиоксидантам, свою роль здесь играет здоровый баланс прооксидантов и других веществ, чье значение пока достоверно не известно.

Десятки лет ученые старались понять сложную биохимию свободных радикалов и антиоксидантов, привлекли к своим исследованиям сотни тысяч добровольцев и потратили на клинические испытания миллионы, однако современная наука пока не может предложить нам ничего лучшего, чем совет, известный нам со школьной скамьи: ешьте по пять овощей или фруктов каждый день.

Иммунитет: защита и нападение

Воспаление представляет собой реакцию ткани на инфекцию или повреждение и имеет следующие симптомы:

  • покраснение вследствие усиления кровотока;
  • отек вследствие накопления жидкости и клеток в тканях;
  • боль вследствие повреждения ткани и раздражения нервных волокон;
  • повышение температуры — местное (вследствие усиления кровотока) и/или системное (повышение температуры тела).

В процесс воспаления включаются белки плазмы крови — комплемент и цитокины. Комплементом называется ряд белков плазмы, вступающих в серию каскадных химических реакций в ответ на инфекцию. Это своего рода многоступенчатая сигнальная система, которая маркирует чужеродные микроорганизмы и привлекает в очаг инфекции специальные клетки — «убийцы» патогенов.

В ответ на сигнал тревоги начинается контратака защитной системы организма — запускается клеточный иммунный ответ. В неспецифическом иммунном ответе принимают участие два типа клеток крови — фагоциты и NK-клетки (или натуральные киллеры).

Фагоциты представляют собой крупные лейкоциты, поглощающие и буквально переваривающие внутри себя микроорганизмы и другие чужеродные частицы. Этот процесс называется фагоцитозом. Фагоциты наиболее чувствительны к микроорганизмам, помеченным белком-комплементом или антителами (эти частицы — уже часть адаптивного или специфического иммунного ответа). Кроме клеток, которые атакуют нарушителя по тревоге, в кровотоке также циркулирует регулярный «патруль» или особый вид лейкоцитов — натуральные киллеры. Их мишенью являются злокачественные клетки и клетки, инфицированные вирусами. Врожденный иммунитет быстро активируется на ранних стадиях инфекции. Его механизмы защиты могут ограничивать распространение патогенов в организме, но возможности для устранения чужеродных частиц ограничены и остаются прежними при повторном заражении тем же патогеном. Поэтому для борьбы с инфекцией обычно требуется участие третьей линии защиты — адаптивной иммунной системы (приобретённый иммунитет).

Адаптивный (приобретенный) иммунитет развивается после первой встречи с чужеродным агентом. Основными его качествами являются специфичность и иммунологическая память.

У специфического иммунитета в ответ на попадание в организм «чужака» в запасе имеется целая стратегия, которой позавидовали бы многие полководцы. «Основные войска» специфического иммунитета — лимфоциты. Это — специализированные лейкоциты, находящиеся в лимфатической системе. Лимфоциты характеризуются очень длительным периодом жизни — от нескольких лет до десятилетий! Известны три типа лимфоцитов: B-клетки, Т-клетки и натуральные киллеры (о них мы уже рассказывали).

Для развития адаптивного иммунитета требуется специфическая мишень — антиген. Антиген представляет собой вещество (обычно крупную молекулу), которая активирует иммунный ответ. Один микроорганизм обычно имеет большое количество антигенов, например, поверхностные структуры,  такие как компоненты клеточной стенки, полисахариды капсулы, жгутики и т. д., или внеклеточные белки, такие как токсины или ферменты, вырабатываемые микроорганизмом.

Сначала происходит выработка В-клетками оружия против нарушителей — белка, который прореагирует с антигеном и сделает его безвредным. Эти белки носят название антител, называемых также иммуноглобулинами (Ig). Антитела очень специфичны и способны связываться только с антигеном той же структуры, что изначально стимулировал их образование. Когда антитело находит соответствующий ему антиген, они соединяются наподобие ключа, вставляемого в замочную скважину.

Затем приобретенный иммунитет начинает действовать сразу на два фронта: гуморальный иммунный ответ направлен на антигены, присутствующие в плазме крови, а клеточный иммунный ответ — на патогены, присутствующие внутри клеток.

В процессе гуморального иммунного ответа В-клетки, активированные специфическими антигенами, начинают усиленно делиться с образованием большого количества идентичных клеток-клонов, каждая из которых способна бороться с данным антигеном. Антитела B-клеток также привлекают фагоциты, уничтожающие и переваривающие антиген-мишень.

Клеточный иммунитет использует «специализированные силы» — T-хелперы и цитотоксические T-клетки, непосредственно атакующие и уничтожающие «войска противника» — инфицированные клетки.

После того, как война с инфекцией выиграна, В- и Т-клетки, активированные антигенами, переходят в состояние покоя и становятся лимфоцитами памяти, специфичными по отношению к данному антигену или патогену. При повторном заражении аналогичным или очень похожим (антигенно-аналогичным) микроорганизмом, они обеспечивают быстрый и мощный иммунный ответ. Высокие концентрации нужных антител достигаются уже через 1 — 2 дня после инфицирования.

Итак, приобретенный иммунитет характеризуется тремя основными особенностями:

  • Специфичность: каждое антитело или активированная Т-клетка реагирует только со специфичным антигеном, вызвавшим ее образование. При этом они не реагируют с другими антигенами и защищают организм только от заболеваний, характеризующихся присутствием данного антигена.
  • Память: после того, как в процессе адаптивного иммунного ответа произошло образование специфичного антитела или Т-клетки, производство антител или активация Т-клеток происходит быстрее и в больших количествах. Данная особенность является основой эффекта многих вакцин.
  • Толерантность к собственным тканям: механизмы адаптивного иммунного ответа в норме способны отличать собственные структуры организма от чужеродных.

Аспекты питания основных микроэлементов в здоровье полости рта и заболеваниях: подробный обзор

Медь 2000 μ г Дети от 1 до 3 лет: 340 мкг / день; От 4 до 8 лет: 440 мкг / день; От 9 до 13 лет: 700 мкг / день; От 14 до 18 лет: 890 мкг / день
Мужчины и женщины в возрасте 19 лет и старше: 900 мкг / день
Беременность: 1000 мкг / день
Лактация: 1300 мкг / день
Дети от 1 до 3 лет: 1 мг / день день; От 4 до 8 лет: 3 мг / день; От 9 до 13 лет: 5 мг / день; От 14 до 18 лет: 8 мг / день
Взрослые от 19 лет и старше (включая период лактации): 10 мг / день
Беременность: 8 мг / день
Устрицы, другие моллюски, цельнозерновые, фасоль, орехи, картофель, мясные субпродукты (почки, печень), темная зелень, сухофрукты и дрожжи

Железо 18 мг Дети от 1 до 3 лет: 7 мг / день; От 4 до 8 лет: 10 мг / день; От 9 до 13 лет: 8 мг / день
Мальчики от 14 до 18 лет:
11 мг / день
Девочки от 14 до 18 лет: 15 мг / день
Взрослые: 8 мг / день для мужчин в возрасте 19 лет и старше и женщин от 51 года и старше
Женщины от 19 до 50 лет: 18 мг / день
Беременные женщины: 27 мг / день
Кормящие матери: 10 мг / день
Младенцы и дети от рождения до 13 лет: 40 мг / день
Дети в возрасте 14 лет и взрослые (включая беременность и кормление грудью): 45 мг / день
Гемовое железо: печень, мясо, птица и рыба
Негемовое железо: злаки, зеленые листовые овощи, бобовые, орехи, масличные семена, пальмовый сахар и сушеные фрукты

Цинк 15 мг Младенцы и дети от 7 месяцев до 3 лет: 3 мг / день; От 4 до 8 лет: 5 мг / день; 9-13 лет: 8 мг / день
Девочки 14-18 лет: 9 мг / день
Мальчики и мужчины 14 лет и старше: 11 мг / день
Женщины 19 лет и старше: 8 мг / день
Беременные женщины : 11 мг / день
Кормящие женщины: 12 мг / день
Младенцы: 4-5 мг / день
Дети от 1 до 3 лет: 7 мг / день; От 4 до 8 лет: 12 мг / день; От 9 до 13 лет: 23 мг / день; От 14 до 18 лет: 34 мг / день
Взрослые от 19 лет и старше (включая беременность и период лактации): 40 мг / день
Корма для животных: мясо, молоко и рыба
Биодоступность цинка в растительной пище низкая

Кобальт 6 μ г Младенцы: 0.5 мкг
Дети 1-3 лет: 0,9 мкг; 4–8 лет: 1,2 мкг; 9–13 лет: 1,8 мкг
Дети старшего возраста и взрослые: 2,4 мкг
Беременные женщины: 2,6 мкг
Кормящие матери: 2,8 мкг
Неизвестно Рыба, орехи, зеленые листовые овощи (брокколи, шпинат), злаки и овес

Хром 120 μ г Дети от 1 до 3 лет: 11 мкг; От 4 до 8 лет: 15 мкг
Мальчики от 9 до 13 лет: 25 мкг
Мужчины от 14 до 50 лет: 35 мкг
Мужчины от 51 года и старше: 30 мкг
Девочки от 9 до 13 лет: 21 мкг; От 14 до 18 лет: 24 мкг
Женщины от 19 до 50 лет: 25 мкг; 51 год и старше: 20 мкг
Беременные женщины: 30 мкг
Кормящие женщины: 45 мкг
Дозы, превышающие 200 мкг, токсичны Лучшие источники: переработанное мясо, цельнозерновые и специи

Молибден 75 μ г Дети от 1 до 3 лет: 17 мкг / день; От 4 до 8 лет: 22 мкг / день; От 9 до 13 лет: 34 мкг / день; От 14 до 18 лет: 43 мкг / день
Мужчины и женщины в возрасте 19 лет и старше: 45 мкг / день
Беременность и лактация: 50 мкг / день
Дети: 300-600 мкг / день
Взрослые (включая беременность и период лактации ): 1100–2000 мкг / день
Корм ​​для животных: печень; овощи: чечевица, сушеный горох, фасоль, соя, овес и ячмень

Селен 70 μ г Дети 1-3 лет: 20 мкг / день
Дети 4-8 лет: 30 мкг / день
Дети 9-13 лет: 40 мкг / день
Взрослые и дети от 14 лет и старше: 55 мкг / день
Беременные женщины: 60 мкг / день
Кормящие женщины: 70 мкг / день
Безопасный верхний предел селена составляет 400 мкг в день для взрослых Печень, почки , морепродукты, мышечное мясо, крупы, зерновые продукты, молочные продукты, фрукты и овощи

Йод 150 μ г Дети от 1 до 8 лет: 90 мкг / день; 9-13 лет: 120 мкг / день
Дети 14 лет и взрослые: 150 мкг / день
Беременные женщины: 209 мкг / день
Кормящие матери: 290 мкг / день
Дети от 1 до 3 лет: 200 мкг / день ; От 4 до 8 лет: 300 мкг / день; От 9 до 13 лет: 600 мкг / день; От 14 до 18 лет: 900 мкг / день
Взрослые старше 19 лет, включая беременных и кормящих женщин: 1100 мкг / день
Лучшие источники: морепродукты (морская рыба и морская соль) и жир печени трески
Небольшие количества: молоко, овощи и крупы

Фтор В питьевой воде: 0.От 5 до 0,8 мг Дети от 1 до 3 лет: 0,7 мг; От 4 до 8 лет: 1 мг; От 9 до 13 лет: 2 мг; От 14 до 18 лет: 3 мг
Мужчины 19 лет и старше: 4 мг
Женщины от 14 лет и старше (включая беременных и кормящих женщин): 3 мг
0,7–9 мг для младенцев
1,3 мг для детей от 1 до 3 года
2,2 мг для детей от 4 до 8 лет
10 мг для детей старше 8 лет, взрослых, беременных и кормящих женщин
Питьевая вода, продукты (морская рыба и сыр) и чай

Аспекты питания основных микроэлементов в здоровье полости рта и заболеваниях: подробный обзор

Медь 2000 μ г Дети от 1 до 3 лет: 340 мкг / день; От 4 до 8 лет: 440 мкг / день; От 9 до 13 лет: 700 мкг / день; От 14 до 18 лет: 890 мкг / день
Мужчины и женщины в возрасте 19 лет и старше: 900 мкг / день
Беременность: 1000 мкг / день
Лактация: 1300 мкг / день
Дети от 1 до 3 лет: 1 мг / день день; От 4 до 8 лет: 3 мг / день; От 9 до 13 лет: 5 мг / день; От 14 до 18 лет: 8 мг / день
Взрослые от 19 лет и старше (включая период лактации): 10 мг / день
Беременность: 8 мг / день
Устрицы, другие моллюски, цельнозерновые, фасоль, орехи, картофель, мясные субпродукты (почки, печень), темная зелень, сухофрукты и дрожжи

Железо 18 мг Дети от 1 до 3 лет: 7 мг / день; От 4 до 8 лет: 10 мг / день; От 9 до 13 лет: 8 мг / день
Мальчики от 14 до 18 лет:
11 мг / день
Девочки от 14 до 18 лет: 15 мг / день
Взрослые: 8 мг / день для мужчин в возрасте 19 лет и старше и женщин от 51 года и старше
Женщины от 19 до 50 лет: 18 мг / день
Беременные женщины: 27 мг / день
Кормящие матери: 10 мг / день
Младенцы и дети от рождения до 13 лет: 40 мг / день
Дети в возрасте 14 лет и взрослые (включая беременность и кормление грудью): 45 мг / день
Гемовое железо: печень, мясо, птица и рыба
Негемовое железо: злаки, зеленые листовые овощи, бобовые, орехи, масличные семена, пальмовый сахар и сушеные фрукты

Цинк 15 мг Младенцы и дети от 7 месяцев до 3 лет: 3 мг / день; От 4 до 8 лет: 5 мг / день; 9-13 лет: 8 мг / день
Девочки 14-18 лет: 9 мг / день
Мальчики и мужчины 14 лет и старше: 11 мг / день
Женщины 19 лет и старше: 8 мг / день
Беременные женщины : 11 мг / день
Кормящие женщины: 12 мг / день
Младенцы: 4-5 мг / день
Дети от 1 до 3 лет: 7 мг / день; От 4 до 8 лет: 12 мг / день; От 9 до 13 лет: 23 мг / день; От 14 до 18 лет: 34 мг / день
Взрослые от 19 лет и старше (включая беременность и период лактации): 40 мг / день
Корма для животных: мясо, молоко и рыба
Биодоступность цинка в растительной пище низкая

Кобальт 6 μ г Младенцы: 0.5 мкг
Дети 1-3 лет: 0,9 мкг; 4–8 лет: 1,2 мкг; 9–13 лет: 1,8 мкг
Дети старшего возраста и взрослые: 2,4 мкг
Беременные женщины: 2,6 мкг
Кормящие матери: 2,8 мкг
Неизвестно Рыба, орехи, зеленые листовые овощи (брокколи, шпинат), злаки и овес

Хром 120 μ г Дети от 1 до 3 лет: 11 мкг; От 4 до 8 лет: 15 мкг
Мальчики от 9 до 13 лет: 25 мкг
Мужчины от 14 до 50 лет: 35 мкг
Мужчины от 51 года и старше: 30 мкг
Девочки от 9 до 13 лет: 21 мкг; От 14 до 18 лет: 24 мкг
Женщины от 19 до 50 лет: 25 мкг; 51 год и старше: 20 мкг
Беременные женщины: 30 мкг
Кормящие женщины: 45 мкг
Дозы, превышающие 200 мкг, токсичны Лучшие источники: переработанное мясо, цельнозерновые и специи

Молибден 75 μ г Дети от 1 до 3 лет: 17 мкг / день; От 4 до 8 лет: 22 мкг / день; От 9 до 13 лет: 34 мкг / день; От 14 до 18 лет: 43 мкг / день
Мужчины и женщины в возрасте 19 лет и старше: 45 мкг / день
Беременность и лактация: 50 мкг / день
Дети: 300-600 мкг / день
Взрослые (включая беременность и период лактации ): 1100–2000 мкг / день
Корм ​​для животных: печень; овощи: чечевица, сушеный горох, фасоль, соя, овес и ячмень

Селен 70 μ г Дети 1-3 лет: 20 мкг / день
Дети 4-8 лет: 30 мкг / день
Дети 9-13 лет: 40 мкг / день
Взрослые и дети от 14 лет и старше: 55 мкг / день
Беременные женщины: 60 мкг / день
Кормящие женщины: 70 мкг / день
Безопасный верхний предел селена составляет 400 мкг в день для взрослых Печень, почки , морепродукты, мышечное мясо, крупы, зерновые продукты, молочные продукты, фрукты и овощи

Йод 150 μ г Дети от 1 до 8 лет: 90 мкг / день; 9-13 лет: 120 мкг / день
Дети 14 лет и взрослые: 150 мкг / день
Беременные женщины: 209 мкг / день
Кормящие матери: 290 мкг / день
Дети от 1 до 3 лет: 200 мкг / день ; От 4 до 8 лет: 300 мкг / день; От 9 до 13 лет: 600 мкг / день; От 14 до 18 лет: 900 мкг / день
Взрослые старше 19 лет, включая беременных и кормящих женщин: 1100 мкг / день
Лучшие источники: морепродукты (морская рыба и морская соль) и жир печени трески
Небольшие количества: молоко, овощи и крупы

Фтор В питьевой воде: 0.От 5 до 0,8 мг Дети от 1 до 3 лет: 0,7 мг; От 4 до 8 лет: 1 мг; От 9 до 13 лет: 2 мг; От 14 до 18 лет: 3 мг
Мужчины 19 лет и старше: 4 мг
Женщины от 14 лет и старше (включая беременных и кормящих женщин): 3 мг
0,7–9 мг для младенцев
1,3 мг для детей от 1 до 3 года
2,2 мг для детей от 4 до 8 лет
10 мг для детей старше 8 лет, взрослых, беременных и кормящих женщин
Питьевая вода, продукты (морская рыба и сыр) и чай

Аспекты питания основных микроэлементов в здоровье полости рта и заболеваниях: подробный обзор

Медь 2000 μ г Дети от 1 до 3 лет: 340 мкг / день; От 4 до 8 лет: 440 мкг / день; От 9 до 13 лет: 700 мкг / день; От 14 до 18 лет: 890 мкг / день
Мужчины и женщины в возрасте 19 лет и старше: 900 мкг / день
Беременность: 1000 мкг / день
Лактация: 1300 мкг / день
Дети от 1 до 3 лет: 1 мг / день день; От 4 до 8 лет: 3 мг / день; От 9 до 13 лет: 5 мг / день; От 14 до 18 лет: 8 мг / день
Взрослые от 19 лет и старше (включая период лактации): 10 мг / день
Беременность: 8 мг / день
Устрицы, другие моллюски, цельнозерновые, фасоль, орехи, картофель, мясные субпродукты (почки, печень), темная зелень, сухофрукты и дрожжи

Железо 18 мг Дети от 1 до 3 лет: 7 мг / день; От 4 до 8 лет: 10 мг / день; От 9 до 13 лет: 8 мг / день
Мальчики от 14 до 18 лет:
11 мг / день
Девочки от 14 до 18 лет: 15 мг / день
Взрослые: 8 мг / день для мужчин в возрасте 19 лет и старше и женщин от 51 года и старше
Женщины от 19 до 50 лет: 18 мг / день
Беременные женщины: 27 мг / день
Кормящие матери: 10 мг / день
Младенцы и дети от рождения до 13 лет: 40 мг / день
Дети в возрасте 14 лет и взрослые (включая беременность и кормление грудью): 45 мг / день
Гемовое железо: печень, мясо, птица и рыба
Негемовое железо: злаки, зеленые листовые овощи, бобовые, орехи, масличные семена, пальмовый сахар и сушеные фрукты

Цинк 15 мг Младенцы и дети от 7 месяцев до 3 лет: 3 мг / день; От 4 до 8 лет: 5 мг / день; 9-13 лет: 8 мг / день
Девочки 14-18 лет: 9 мг / день
Мальчики и мужчины 14 лет и старше: 11 мг / день
Женщины 19 лет и старше: 8 мг / день
Беременные женщины : 11 мг / день
Кормящие женщины: 12 мг / день
Младенцы: 4-5 мг / день
Дети от 1 до 3 лет: 7 мг / день; От 4 до 8 лет: 12 мг / день; От 9 до 13 лет: 23 мг / день; От 14 до 18 лет: 34 мг / день
Взрослые от 19 лет и старше (включая беременность и период лактации): 40 мг / день
Корма для животных: мясо, молоко и рыба
Биодоступность цинка в растительной пище низкая

Кобальт 6 μ г Младенцы: 0.5 мкг
Дети 1-3 лет: 0,9 мкг; 4–8 лет: 1,2 мкг; 9–13 лет: 1,8 мкг
Дети старшего возраста и взрослые: 2,4 мкг
Беременные женщины: 2,6 мкг
Кормящие матери: 2,8 мкг
Неизвестно Рыба, орехи, зеленые листовые овощи (брокколи, шпинат), злаки и овес

Хром 120 μ г Дети от 1 до 3 лет: 11 мкг; От 4 до 8 лет: 15 мкг
Мальчики от 9 до 13 лет: 25 мкг
Мужчины от 14 до 50 лет: 35 мкг
Мужчины от 51 года и старше: 30 мкг
Девочки от 9 до 13 лет: 21 мкг; От 14 до 18 лет: 24 мкг
Женщины от 19 до 50 лет: 25 мкг; 51 год и старше: 20 мкг
Беременные женщины: 30 мкг
Кормящие женщины: 45 мкг
Дозы, превышающие 200 мкг, токсичны Лучшие источники: переработанное мясо, цельнозерновые и специи

Молибден 75 μ г Дети от 1 до 3 лет: 17 мкг / день; От 4 до 8 лет: 22 мкг / день; От 9 до 13 лет: 34 мкг / день; От 14 до 18 лет: 43 мкг / день
Мужчины и женщины в возрасте 19 лет и старше: 45 мкг / день
Беременность и лактация: 50 мкг / день
Дети: 300-600 мкг / день
Взрослые (включая беременность и период лактации ): 1100–2000 мкг / день
Корм ​​для животных: печень; овощи: чечевица, сушеный горох, фасоль, соя, овес и ячмень

Селен 70 μ г Дети 1-3 лет: 20 мкг / день
Дети 4-8 лет: 30 мкг / день
Дети 9-13 лет: 40 мкг / день
Взрослые и дети от 14 лет и старше: 55 мкг / день
Беременные женщины: 60 мкг / день
Кормящие женщины: 70 мкг / день
Безопасный верхний предел селена составляет 400 мкг в день для взрослых Печень, почки , морепродукты, мышечное мясо, крупы, зерновые продукты, молочные продукты, фрукты и овощи

Йод 150 μ г Дети от 1 до 8 лет: 90 мкг / день; 9-13 лет: 120 мкг / день
Дети 14 лет и взрослые: 150 мкг / день
Беременные женщины: 209 мкг / день
Кормящие матери: 290 мкг / день
Дети от 1 до 3 лет: 200 мкг / день ; От 4 до 8 лет: 300 мкг / день; От 9 до 13 лет: 600 мкг / день; От 14 до 18 лет: 900 мкг / день
Взрослые старше 19 лет, включая беременных и кормящих женщин: 1100 мкг / день
Лучшие источники: морепродукты (морская рыба и морская соль) и жир печени трески
Небольшие количества: молоко, овощи и крупы

Фтор В питьевой воде: 0.От 5 до 0,8 мг Дети от 1 до 3 лет: 0,7 мг; От 4 до 8 лет: 1 мг; От 9 до 13 лет: 2 мг; От 14 до 18 лет: 3 мг
Мужчины 19 лет и старше: 4 мг
Женщины от 14 лет и старше (включая беременных и кормящих женщин): 3 мг
0,7–9 мг для младенцев
1,3 мг для детей от 1 до 3 года
2,2 мг для детей от 4 до 8 лет
10 мг для детей старше 8 лет, взрослых, беременных и кормящих женщин
Питьевая вода, продукты (морская рыба и сыр) и чай

Аспекты питания основных микроэлементов в здоровье полости рта и заболеваниях: подробный обзор

Медь 2000 μ г Дети от 1 до 3 лет: 340 мкг / день; От 4 до 8 лет: 440 мкг / день; От 9 до 13 лет: 700 мкг / день; От 14 до 18 лет: 890 мкг / день
Мужчины и женщины в возрасте 19 лет и старше: 900 мкг / день
Беременность: 1000 мкг / день
Лактация: 1300 мкг / день
Дети от 1 до 3 лет: 1 мг / день день; От 4 до 8 лет: 3 мг / день; От 9 до 13 лет: 5 мг / день; От 14 до 18 лет: 8 мг / день
Взрослые от 19 лет и старше (включая период лактации): 10 мг / день
Беременность: 8 мг / день
Устрицы, другие моллюски, цельнозерновые, фасоль, орехи, картофель, мясные субпродукты (почки, печень), темная зелень, сухофрукты и дрожжи

Железо 18 мг Дети от 1 до 3 лет: 7 мг / день; От 4 до 8 лет: 10 мг / день; От 9 до 13 лет: 8 мг / день
Мальчики от 14 до 18 лет:
11 мг / день
Девочки от 14 до 18 лет: 15 мг / день
Взрослые: 8 мг / день для мужчин в возрасте 19 лет и старше и женщин от 51 года и старше
Женщины от 19 до 50 лет: 18 мг / день
Беременные женщины: 27 мг / день
Кормящие матери: 10 мг / день
Младенцы и дети от рождения до 13 лет: 40 мг / день
Дети в возрасте 14 лет и взрослые (включая беременность и кормление грудью): 45 мг / день
Гемовое железо: печень, мясо, птица и рыба
Негемовое железо: злаки, зеленые листовые овощи, бобовые, орехи, масличные семена, пальмовый сахар и сушеные фрукты

Цинк 15 мг Младенцы и дети от 7 месяцев до 3 лет: 3 мг / день; От 4 до 8 лет: 5 мг / день; 9-13 лет: 8 мг / день
Девочки 14-18 лет: 9 мг / день
Мальчики и мужчины 14 лет и старше: 11 мг / день
Женщины 19 лет и старше: 8 мг / день
Беременные женщины : 11 мг / день
Кормящие женщины: 12 мг / день
Младенцы: 4-5 мг / день
Дети от 1 до 3 лет: 7 мг / день; От 4 до 8 лет: 12 мг / день; От 9 до 13 лет: 23 мг / день; От 14 до 18 лет: 34 мг / день
Взрослые от 19 лет и старше (включая беременность и период лактации): 40 мг / день
Корма для животных: мясо, молоко и рыба
Биодоступность цинка в растительной пище низкая

Кобальт 6 μ г Младенцы: 0.5 мкг
Дети 1-3 лет: 0,9 мкг; 4–8 лет: 1,2 мкг; 9–13 лет: 1,8 мкг
Дети старшего возраста и взрослые: 2,4 мкг
Беременные женщины: 2,6 мкг
Кормящие матери: 2,8 мкг
Неизвестно Рыба, орехи, зеленые листовые овощи (брокколи, шпинат), злаки и овес

Хром 120 μ г Дети от 1 до 3 лет: 11 мкг; От 4 до 8 лет: 15 мкг
Мальчики от 9 до 13 лет: 25 мкг
Мужчины от 14 до 50 лет: 35 мкг
Мужчины от 51 года и старше: 30 мкг
Девочки от 9 до 13 лет: 21 мкг; От 14 до 18 лет: 24 мкг
Женщины от 19 до 50 лет: 25 мкг; 51 год и старше: 20 мкг
Беременные женщины: 30 мкг
Кормящие женщины: 45 мкг
Дозы, превышающие 200 мкг, токсичны Лучшие источники: переработанное мясо, цельнозерновые и специи

Молибден 75 μ г Дети от 1 до 3 лет: 17 мкг / день; От 4 до 8 лет: 22 мкг / день; От 9 до 13 лет: 34 мкг / день; От 14 до 18 лет: 43 мкг / день
Мужчины и женщины в возрасте 19 лет и старше: 45 мкг / день
Беременность и лактация: 50 мкг / день
Дети: 300-600 мкг / день
Взрослые (включая беременность и период лактации ): 1100–2000 мкг / день
Корм ​​для животных: печень; овощи: чечевица, сушеный горох, фасоль, соя, овес и ячмень

Селен 70 μ г Дети 1-3 лет: 20 мкг / день
Дети 4-8 лет: 30 мкг / день
Дети 9-13 лет: 40 мкг / день
Взрослые и дети от 14 лет и старше: 55 мкг / день
Беременные женщины: 60 мкг / день
Кормящие женщины: 70 мкг / день
Безопасный верхний предел селена составляет 400 мкг в день для взрослых Печень, почки , морепродукты, мышечное мясо, крупы, зерновые продукты, молочные продукты, фрукты и овощи

Йод 150 μ г Дети от 1 до 8 лет: 90 мкг / день; 9-13 лет: 120 мкг / день
Дети 14 лет и взрослые: 150 мкг / день
Беременные женщины: 209 мкг / день
Кормящие матери: 290 мкг / день
Дети от 1 до 3 лет: 200 мкг / день ; От 4 до 8 лет: 300 мкг / день; От 9 до 13 лет: 600 мкг / день; От 14 до 18 лет: 900 мкг / день
Взрослые старше 19 лет, включая беременных и кормящих женщин: 1100 мкг / день
Лучшие источники: морепродукты (морская рыба и морская соль) и жир печени трески
Небольшие количества: молоко, овощи и крупы

Фтор В питьевой воде: 0.От 5 до 0,8 мг Дети от 1 до 3 лет: 0,7 мг; От 4 до 8 лет: 1 мг; От 9 до 13 лет: 2 мг; От 14 до 18 лет: 3 мг
Мужчины 19 лет и старше: 4 мг
Женщины от 14 лет и старше (включая беременных и кормящих женщин): 3 мг
0,7–9 мг для младенцев
1,3 мг для детей от 1 до 3 года
2,2 мг для детей от 4 до 8 лет
10 мг для детей старше 8 лет, взрослых, беременных и кормящих женщин
Питьевая вода, продукты (морская рыба и сыр) и чай

Аспекты питания основных микроэлементов в здоровье полости рта и заболеваниях: подробный обзор

Медь 2000 μ г Дети от 1 до 3 лет: 340 мкг / день; От 4 до 8 лет: 440 мкг / день; От 9 до 13 лет: 700 мкг / день; От 14 до 18 лет: 890 мкг / день
Мужчины и женщины в возрасте 19 лет и старше: 900 мкг / день
Беременность: 1000 мкг / день
Лактация: 1300 мкг / день
Дети от 1 до 3 лет: 1 мг / день день; От 4 до 8 лет: 3 мг / день; От 9 до 13 лет: 5 мг / день; От 14 до 18 лет: 8 мг / день
Взрослые от 19 лет и старше (включая период лактации): 10 мг / день
Беременность: 8 мг / день
Устрицы, другие моллюски, цельнозерновые, фасоль, орехи, картофель, мясные субпродукты (почки, печень), темная зелень, сухофрукты и дрожжи

Железо 18 мг Дети от 1 до 3 лет: 7 мг / день; От 4 до 8 лет: 10 мг / день; От 9 до 13 лет: 8 мг / день
Мальчики от 14 до 18 лет:
11 мг / день
Девочки от 14 до 18 лет: 15 мг / день
Взрослые: 8 мг / день для мужчин в возрасте 19 лет и старше и женщин от 51 года и старше
Женщины от 19 до 50 лет: 18 мг / день
Беременные женщины: 27 мг / день
Кормящие матери: 10 мг / день
Младенцы и дети от рождения до 13 лет: 40 мг / день
Дети в возрасте 14 лет и взрослые (включая беременность и кормление грудью): 45 мг / день
Гемовое железо: печень, мясо, птица и рыба
Негемовое железо: злаки, зеленые листовые овощи, бобовые, орехи, масличные семена, пальмовый сахар и сушеные фрукты

Цинк 15 мг Младенцы и дети от 7 месяцев до 3 лет: 3 мг / день; От 4 до 8 лет: 5 мг / день; 9-13 лет: 8 мг / день
Девочки 14-18 лет: 9 мг / день
Мальчики и мужчины 14 лет и старше: 11 мг / день
Женщины 19 лет и старше: 8 мг / день
Беременные женщины : 11 мг / день
Кормящие женщины: 12 мг / день
Младенцы: 4-5 мг / день
Дети от 1 до 3 лет: 7 мг / день; От 4 до 8 лет: 12 мг / день; От 9 до 13 лет: 23 мг / день; От 14 до 18 лет: 34 мг / день
Взрослые от 19 лет и старше (включая беременность и период лактации): 40 мг / день
Корма для животных: мясо, молоко и рыба
Биодоступность цинка в растительной пище низкая

Кобальт 6 μ г Младенцы: 0.5 мкг
Дети 1-3 лет: 0,9 мкг; 4–8 лет: 1,2 мкг; 9–13 лет: 1,8 мкг
Дети старшего возраста и взрослые: 2,4 мкг
Беременные женщины: 2,6 мкг
Кормящие матери: 2,8 мкг
Неизвестно Рыба, орехи, зеленые листовые овощи (брокколи, шпинат), злаки и овес

Хром 120 μ г Дети от 1 до 3 лет: 11 мкг; От 4 до 8 лет: 15 мкг
Мальчики от 9 до 13 лет: 25 мкг
Мужчины от 14 до 50 лет: 35 мкг
Мужчины от 51 года и старше: 30 мкг
Девочки от 9 до 13 лет: 21 мкг; От 14 до 18 лет: 24 мкг
Женщины от 19 до 50 лет: 25 мкг; 51 год и старше: 20 мкг
Беременные женщины: 30 мкг
Кормящие женщины: 45 мкг
Дозы, превышающие 200 мкг, токсичны Лучшие источники: переработанное мясо, цельнозерновые и специи

Молибден 75 μ г Дети от 1 до 3 лет: 17 мкг / день; От 4 до 8 лет: 22 мкг / день; От 9 до 13 лет: 34 мкг / день; От 14 до 18 лет: 43 мкг / день
Мужчины и женщины в возрасте 19 лет и старше: 45 мкг / день
Беременность и лактация: 50 мкг / день
Дети: 300-600 мкг / день
Взрослые (включая беременность и период лактации ): 1100–2000 мкг / день
Корм ​​для животных: печень; овощи: чечевица, сушеный горох, фасоль, соя, овес и ячмень

Селен 70 μ г Дети 1-3 лет: 20 мкг / день
Дети 4-8 лет: 30 мкг / день
Дети 9-13 лет: 40 мкг / день
Взрослые и дети от 14 лет и старше: 55 мкг / день
Беременные женщины: 60 мкг / день
Кормящие женщины: 70 мкг / день
Безопасный верхний предел селена составляет 400 мкг в день для взрослых Печень, почки , морепродукты, мышечное мясо, крупы, зерновые продукты, молочные продукты, фрукты и овощи

Йод 150 μ г Дети от 1 до 8 лет: 90 мкг / день; 9-13 лет: 120 мкг / день
Дети 14 лет и взрослые: 150 мкг / день
Беременные женщины: 209 мкг / день
Кормящие матери: 290 мкг / день
Дети от 1 до 3 лет: 200 мкг / день ; От 4 до 8 лет: 300 мкг / день; От 9 до 13 лет: 600 мкг / день; От 14 до 18 лет: 900 мкг / день
Взрослые старше 19 лет, включая беременных и кормящих женщин: 1100 мкг / день
Лучшие источники: морепродукты (морская рыба и морская соль) и жир печени трески
Небольшие количества: молоко, овощи и крупы

Фтор В питьевой воде: 0.От 5 до 0,8 мг Дети от 1 до 3 лет: 0,7 мг; От 4 до 8 лет: 1 мг; От 9 до 13 лет: 2 мг; От 14 до 18 лет: 3 мг
Мужчины 19 лет и старше: 4 мг
Женщины от 14 лет и старше (включая беременных и кормящих женщин): 3 мг
0,7–9 мг для младенцев
1,3 мг для детей от 1 до 3 года
2,2 мг для детей от 4 до 8 лет
10 мг для детей старше 8 лет, взрослых, беременных и кормящих женщин
Питьевая вода, продукты (морская рыба и сыр) и чай

Влияние микроэлементов на среду для культивирования клеток и последующую обработку

Несмотря на высокую эффективность и целевую специфичность биофармацевтических препаратов, все еще существует множество проблем, связанных с достижением эффективного производства терапевтических белков.К ним относятся открытие новых подходов к максимальной экспрессии белка, разработка экономичных, гибких и надежных производственных процессов для максимального увеличения выхода продукта и решение сложных проблем, связанных с преобразованием белков в их активное состояние.

Одна из областей, в которой растет интерес к решению этих проблем, — это микроэлементы в средах для культивирования клеток и последующая обработка. Микроэлементы в средах для культивирования клеток и добавках могут стимулировать или ингибировать рост клеток и экспрессию или качество белка на различных уровнях во время предшествующих процессов.

Доктор Нанду Деоркар, вице-президент по исследованиям и разработкам Avantor, и Клаудия Беррон, вице-президент по глобальному коммерческому развитию биофармацевтики Avantor, обсуждают влияние, которое следы металлов могут иметь на среду для культивирования клеток и последующую обработку.

Почему важно понимать влияние следов металлов на производство биофармацевтических препаратов, особенно на разведке и добыче?

Восходящий процесс (USP) в производстве биофармацевтики обычно определяется как стадия, на которой терапевтические белковые молекулы продуцируются, как правило, линиями клеток бактерий или млекопитающих в биореакторах.Когда они достигают желаемой плотности для периодических культур или культур с подпиткой, материал проходит процесс сбора урожая, чаще всего непрерывное центрифугирование с последующей глубинной фильтрацией, для подготовки к последующей обработке (DSP).

Уровни и, что наиболее важно, постоянство микроэлементов от партии к партии являются критическими переменными, которые могут повлиять на рост клеток, поэтому необходимо тщательно контролировать все элементарные примеси для всего поступающего сырья. Минимальные изменения на уровне частей на миллиард некоторых элементарных примесей могут повлиять на характер гликозилирования, уменьшить рост клеток-мишеней и, в некоторых случаях, прекратить рост или повлиять на терапевтические свойства.

Насколько подробно изучен этот вопрос?

В рамках разработки сред для культивирования клеток ключевая роль микроэлементов в регулировании осмоляльности и функции клеток была тщательно изучена. Тем не менее, микроэлементы и их влияние на последующую обработку привлекают все больше внимания, с акцентом на то, как уровни следовых металлов влияют на экспрессию белка и производительность процесса биореактора, а также исследования и документацию о влиянии низких уровней следов металлов. За последние несколько лет производители и поставщики биофармацевтических сред для культивирования клеток, а также пищевых добавок и питательных веществ начали улучшать знания о влиянии изменчивости от партии к партии примесей металлических примесей при предварительной обработке.В пределах низких уровней следов металлов необходимо дополнительно изучить влияние изменчивости низких уровней, учитывая, что изменчивость будет влиять на каждую молекулу по-разному.

Как следовые количества металлов вводятся при первичной переработке?

Их можно ввести несколькими способами: микроэлементы могут присутствовать в средах для культивирования клеток, источники энергии углеводов (сахара), такие как сахароза и галактоза, и они могут присутствовать в материалах, таких как бикарбонат натрия, которые используются для регулирования факторов pH. в биореакторах.Есть также производители биофармацевтических препаратов, которые определили, что введение минеральных элементов в качестве добавок может помочь в достижении целевых выходов, влияя на паттерны гликозилирования и влияя на процессы сворачивания / разворачивания белка в целевой молекуле.

Следы металлов, которые больше всего влияют на первичную переработку, — это цинк, алюминий, марганец, молибден и железо. В некоторой степени ко второй категории относятся медь и никель. Это наиболее распространенные элементы, влияющие на паттерн гликозилирования.

Как следы металлов могут повлиять на восходящий процесс?

Есть несколько потенциальных эффектов. Как уже говорилось, могут происходить изменения в паттерне гликозилирования. В общем, гликозилирование трудно точно контролировать в клетках млекопитающих, поскольку оно зависит от множества факторов, таких как клональные вариации, среды, а также условия культивирования. Оптимизация среды для культивирования клеток зависит от линии клеток из-за метаболизма и потребления питательных веществ конкретными линиями клеток.Микроэлементы могут влиять на гликозилирование, поскольку они могут модулировать активность различных ферментов и переносчиков, таких как гликозилтрансферазы, маннозидазы и лизосомальные гидролазы.

Кроме того, если производимый белок имеет реактивные пространства, которые реагируют на различные следы металлов или соотношение определенных металлов, могут происходить реакции во время сворачивания и разворачивания белка, такие как окисление. В случае производства заместительной ферментной терапии могут возникнуть другие реакции. В составе фермента могут присутствовать следы металлов, которые могут быть заменены другими следами металлов, поступающими из внешних источников, такими как галактоза или бикарбонат натрия, вызывая различные реакции, которые могут повлиять на выход продукции.

Какие уровни следов металлов могут вызывать эти эффекты?

К сожалению, лучший ответ на этот вопрос — «это зависит от обстоятельств». Он включает в себя целевую молекулу, фермент, используемое генетическое секвенирование, и, поскольку каждая биофармацевтическая компания использует эти элементы уникальным образом, требования к металлическим следам чрезвычайно индивидуальны. Также важно знать, что условия процесса могут влиять на то, как сами следы металлов взаимодействуют с клеткой-мишенью во время биопроцессинга.Окружающая среда клетки, внешняя среда и температура среды могут влиять на поглощение микроэлементов и их метаболизм в клетках.

В Avantor мы провели исследования влияния изменчивости уровней следов железа, а также изучили изменения в уровнях от 100 до 300 частей на миллиард. В молекуле, использованной для этого исследования, если уровни железа превышали 300 частей на миллиард, наблюдалось изменение гликозилирования. Таким образом, эти уровни в 100 частей на миллиард заслуживают изучения и, как мы полагаем, заслуживают контроля из-за наблюдаемых воздействий.

Насколько хорошо понятны эти эффекты?

Это важная область биологической обработки, требующая дальнейшего изучения. Хорошо известно, что следовые количества металлов влияют на биологическое производство выше по течению, и более низкие уровни лучше, но при этом необходим некоторый уровень следов металлов. Понятно, что существует множество источников микроэлементов металлов, и растет понимание того, что вариации в низких уровнях следов металлов могут отрицательно повлиять на выходы биопроцессов выше по потоку, а также на качество собранных клеток.Но как именно и почему эти следы металлов вызывают эти эффекты, еще не изучено.

Следующей областью исследований является взаимодействие двух различных металлических микроэлементов друг с другом и их совместное влияние на процесс. Некоторые белки имеют более сложные процессы, и мы заметили, что изменение соотношения двух элементов — в данном примере никеля и меди — влияет на то, как работает белок. Почему именно это происходит, еще предстоит изучить и понять.

Как эти взаимодействия следов металлов в предшествующем процессе влияют на производство лекарств в целом?

В конечном итоге, неправильно контролируемые уровни следов металлов влияют на выход процесса на стадии производства. Неправильные или непостоянные уровни следов металлов, вводимых в процесс из разных источников, могут повлиять на выход продукции на начальном этапе. Например, если вы производите три грамма на литр антитела, и из-за этого половина грамма на литр не гликозилируется должным образом, то вы значительно снижаете свой исходный выход.

Это также влияет на последующий процесс очистки. В предшествующем процессе производства клеточной культуры цель состоит в том, чтобы получить как можно большее количество максимально чистого материала. Если уровни чистоты не являются оптимальными, вам может потребоваться выполнить дополнительную стадию последующей очистки для достижения общих целевых показателей выхода процесса. Это увеличивает временные и материальные затраты, поэтому за счет лучшего контроля над всеми источниками следов металлов в восходящем процессе и определения правильных низких уровней этих следов металлов, а затем обеспечения того, чтобы эти низкие уровни были постоянными, этот риск этих негативных воздействий можно уменьшить.

Также важно отметить, что после того, как вы определили оптимальные уровни следовых металлов и взаимодействия различных следов металлов в процессе культивирования клеток, такие же уровни следов металлов должны присутствовать в процессе создания банка клеток. Если концентрация следов металлов на этапе накопления клеток отличается от среды для производства клеток, накопленные клетки могут быть «шокированы» при переносе из банков клеток в производство.

Как следует устранять или контролировать следы металлов?

Есть два способа добиться лучшего контроля.Первый — это лучшее понимание того, как следы металлов полностью влияют на урожайность, в зависимости от клеток и процесса. Это включает в себя проведение исследований DOE, в которых используются материалы с полностью определенными уровнями следов металлов, которые согласованы и производятся в соответствии с процессами cGMP. В противном случае существует риск того, что по мере того, как производители переходят от исследований к уровню производства, результаты могут значительно отличаться. Зная, какие уровни следов металлов были в исследовании Министерства энергетики, и обеспечение того, чтобы материалы, используемые при увеличении масштабов, имели одинаковые постоянные низкие уровни, позволили бы достичь целевого уровня добычи.

Это означает наличие стратегии обработки сырья, используемого для предшествующего производства, и определение допустимых уровней следов металлов во всем сырье, которое используется в вашем предшествующем процессе. Это выходит за рамки только первоначального состава среды для культивирования клеток в начале процесса. Он должен включать источники углерода, такие как галактоза или декстроза, которые могут быть добавлены в больших количествах в нескольких точках подачи в восходящем процессе.

Avantor, например, производит сахара с низким содержанием эндотоксина (HPLE) высокой чистоты, включая сахарозу, галактозу и дигидрат трегалозы.Эти сахара были произведены с использованием запатентованных методов очистки и были охарактеризованы, чтобы постоянно содержать менее пяти частей на миллиард следов металлов, включая цинк, никель, медь и кадмий.

Производитель может добавлять другие материалы только один раз на определенном этапе процесса, например, аминокислоты, факторы роста и материалы для контроля pH. Все они являются потенциальными источниками следов металлов, которые могут накапливаться; Хотя было проделано больше работы по определению содержания следов металлов в источниках углеводов, этим другим материалам уделялось не так много внимания.

Какие результаты могут ожидать производители биофармацевтических препаратов при улучшении характеристик и контроля следов металлов?

Потенциальным результатом является надежный восходящий процесс, который намного более предсказуем и находится под контролем. Это означает, что нет изменений в продукции белка от партии к партии из клетки-мишени и при гораздо более чистых выходах. Это может затем повлиять на последующие процессы, позволяя максимально упростить этапы очистки и потенциально исключая этап очистки.

В конечном счете, понимание и определение целевых уровней следов металлов означает признание того, что они играют роль в таких процессах, как разворачивание белков и гликозилирование. Это означает признание того, что все материалов, используемых в процессах — углеводы, аминокислоты, материалы для контроля pH — могут вносить следы металлов таким образом, что в совокупности могут повлиять на выход и качество добычи. Определение уровней следов металлов и обеспечение полной характеристики всех исходных материалов обеспечит основу для самого строгого контроля.

Компания Avantor ( www.avantorinc.com ), работающая в более чем 30 странах мира, является ведущим мировым поставщиком интегрированных индивидуальных решений для биологических наук и отраслей передовых технологий.

7,5 Микроэлементы в биологических системах

  1. Последнее обновление
  2. Сохранить как PDF
  1. Макроминералы
  2. Реакции группового переноса
  3. Реакции биологического окисления и восстановления
  4. Структурные компоненты
    1. Пример 9
    2. Резюме
    3. Ключевой вывод
    4. Концептуальные задачи
Задача обучения для этого модуля некоторые роли микроэлементов в биологических системах.

Из более чем 100 известных элементов примерно 28 известны как , необходимы для роста по крайней мере одного биологического вида, и только 19 необходимы для человека. Что делает некоторые элементы необходимыми для организма, а остальные — несущественными? Есть как минимум две причины:

  1. Элемент должен обладать каким-то уникальным химическим свойством, которое организм может использовать в своих интересах и без которого он не может выжить.
  2. Достаточное количество элемента должно быть доступно в окружающей среде в легкодоступной форме.

Как вы можете видеть в таблице 7.6, многие элементы, которых много в земной коре, тем не менее, не находятся в легкодоступной форме (например, в виде ионов, растворенных в морской воде). Вместо этого они склонны к образованию нерастворимых оксидов, гидроксидов или карбонатных солей. Хотя кремний является вторым по распространенности элементом в земной коре, SiO 2 и многие силикатные минералы нерастворимы, поэтому они не легко усваиваются живыми тканями. Это также относится к железу и алюминию, которые образуют нерастворимые гидроксиды.Поэтому многие организмы разработали сложные стратегии получения железа из окружающей среды. Напротив, молибден и йод, хотя и не особенно распространены, хорошо растворимы — молибден в виде молибдата (MoO 4 2-) и йод в виде йодида (I ) и йодата (IO 3 ). — и поэтому в морской воде их больше, чем в железе. Неудивительно, что и молибден, и йод используются многими организмами.

Таблица 7.6 Относительное содержание некоторых основных элементов в земной коре и океанах

9125 9129 912500000 91232000 0,062 0,02 90000 0,07 Данные из CRC Handbook of Chemistry and Physics (2004).

К счастью, многие элементы, необходимые для жизни, необходимы только в небольших количествах. (В таблице 1.6 перечислены микроэлементы в организме человека.) Даже в этом случае элементы, которые присутствуют в следовых количествах, могут оказывать большое влияние на здоровье организма. Такие элементы функционируют как часть механизма амплификации, в котором молекула, содержащая микроэлемент, является важной частью более крупной молекулы, которая, в свою очередь, регулирует концентрации других молекул и так далее. Механизм амплификации позволяет небольшим вариациям концентрации микроэлемента иметь большие биохимические эффекты.

Основные микроэлементы у млекопитающих могут выполнять четыре основные роли: (1) они могут вести себя как макроминералы, (2) они могут участвовать в катализе реакций передачи группы, (3) они могут участвовать в реакциях окисления-восстановления или (4) они могут служить структурными элементами.

  • Макроминералы

    Макроминералы — Na, Mg, K, Ca, Cl и P — обнаруживаются в больших количествах в биологических тканях и присутствуют в виде неорганических соединений, растворенных или осажденных. Все образуют одноатомные ионы (Na + , Mg 2+ , K + , Ca 2+ , Cl ), за исключением фосфора, который находится в виде фосфат-иона (PO 4 3). — ). Напомним, что соли кальция используются многими организмами в качестве структурных материалов, например, в костях [гидроксиапатит, Ca 5 (PO 4 ) 3 OH]; соли кальция также содержатся в морских и яичных оболочках (CaCO 3 ), и они служат хранилищем Ca 2+ в растениях (оксалат кальция).

    Жидкости организма всех многоклеточных организмов содержат относительно высокие концентрации этих ионов. Некоторые ионы (Na + , Ca 2+ и Cl ) локализуются в основном в внеклеточных жидкостях , таких как плазма крови, тогда как K + , Mg 2+ и фосфат локализуются в первую очередь. в внутриклеточных жидкостях. Для избирательного переноса этих ионов через клеточные мембраны требуется значительное количество энергии. Селективность этих ионных насосов основана на различии ионного радиуса (Раздел 7.2) и ионный заряд.

    Поддержание оптимальных уровней макроминералов важно, потому что временные изменения их концентрации в клетке влияют на биологические функции. Например, для передачи нервного импульса требуется внезапное обратимое увеличение количества Na + , поступающего в нервную клетку. Точно так же, когда гормоны связываются с клеткой, они могут заставить ионы Ca 2+ проникать в эту клетку. В сложной серии реакций ионы Ca 2+ запускают такие события, как сокращение мышц, высвобождение нейротрансмиттеров или секреция гормонов.Когда люди, которые интенсивно тренируются в течение длительных периодов времени, чрезмерно увлажняют воду, низкий уровень соли в крови может привести к состоянию, известному как гипонатриемия , которое вызывает тошноту, усталость, слабость, судороги и даже смерть. По этой причине спортсмены должны пить спортивные напитки, содержащие соли, а не только воду.

  • Реакции передачи группы

    Ионы следов металлов также играют решающую роль во многих биологических реакциях передачи группы. В этих реакциях узнаваемая функциональная группа, такая как фосфорильная единица (-PO 3 ), передается от одной молекулы к другой.В этом примере

    Уравнение 7.18

    ROPO2-3 + h3O → ROH + HOPO2-3

    единица переносится из алкоксида (RO ) в гидроксид (OH ). Чтобы нейтрализовать отрицательный заряд молекулы, которая подвергается реакции, многие биологические реакции этого типа требуют присутствия ионов металлов, таких как Zn 2+ , Mn 2+ , Ca 2+ или Mg . 2+ и иногда Ni 2+ или Fe 3+ . Эффективность иона металла во многом зависит от его заряда и радиуса.

    Цинк является важным компонентом ферментов, которые катализируют гидролиз белков, добавление воды к CO 2 с образованием HCO 3 и H + , а также большинства реакций, участвующих в ДНК (дезоксирибонуклеиновая кислота). кислота) и РНК (рибонуклеиновая кислота) синтез, восстановление и репликация. Следовательно, дефицит цинка имеет серьезные побочные эффекты, включая аномальный рост и половое развитие, а также потерю вкусовых ощущений.

  • Биологические реакции окисления-восстановления

    Третья важная роль микроэлементов — перенос электронов в биологических реакциях окисления-восстановления.Железо и медь, например, содержатся в белках и ферментах, которые участвуют в транспорте O 2 , восстановлении O 2 , окислении органических молекул и превращении атмосферного N 2 в NH 3 . . Эти металлы обычно переносят один электрон на каждый ион металла, чередуя состояния окисления, такие как 3 + / 2 + (Fe) или 2 + / 1 + (Cu).

    Поскольку большинство переходных металлов имеют несколько степеней окисления, разделенных только одним электроном, они уникально подходят для переноса нескольких электронов по одному.Примеры включают молибден (+ 6 / + 5 / + 4), который широко используется в двухэлектронных реакциях окисления-восстановления, и кобальт (+ 3 / + 2 / + 1), который содержится в витамине B 12 . Напротив, многие из элементов p -блока хорошо подходят для одновременного переноса двух электронов. Селен (+ 4 / + 2), например, содержится в ферменте, который катализирует окисление глутатиона (GSH) до его дисульфидной формы (GSSG):

    \ [2 GSH + H_ 2 O_ 2 \ rightarrow 2 H_ 2 O + GSSG \]

  • Структурные компоненты

    Микроэлементы также действуют как важные структурные компоненты биологических тканей или молекул.Во многих системах, где микроэлементы не изменяют степень окисления или иным образом не участвуют непосредственно в биохимических реакциях, часто предполагается, хотя часто без прямых доказательств, что элемент стабилизирует конкретную трехмерную структуру биомолекулы, в которой он находится. Одним из примеров является сахар-связывающий белок, содержащий Mn 2+ и Ca 2+ , который является частью системы биологической защиты некоторых растений. Другие примеры включают ферменты, которым требуется Zn 2+ в одном сайте, чтобы активность проявлялась в другом сайте молекулы.Некоторые неметаллические элементы, такие как F , также играют структурную роль. Фторид, например, вытесняет гидроксид-ион из гидроксиапатита в кости и зубах с образованием фторапатита [Ca 5 (PO 4 ) 3 F]. Фторапатит менее растворим в кислоте и обеспечивает повышенную устойчивость к кариесу.

    Фторапатит (\ (Ca_5 (PO_4) _3F \)) менее растворим, чем гидроксиапатит (\ (Ca_5 (PO_4) _3 (OH) \))

    Другим примером неметалла, который играет структурную роль, является йод, который у человека содержится только в одной молекуле, гормоне щитовидной железы тироксин .Когда диета человека не содержит достаточного количества йода, щитовидные железы на его шее сильно увеличиваются, что приводит к состоянию, называемому зобом . Поскольку йод содержится в основном в океанической рыбе и водорослях, у многих первых поселенцев Среднего Запада Америки развился зоб из-за отсутствия морепродуктов в их рационе. Сегодня большая часть поваренной соли содержит небольшое количество йода [на самом деле йодид калия (KI)], чтобы предотвратить эту проблему.

    Человек с зобом. В США «йодированная соль» предотвращает появление зоба.

    Пример 9

    Есть некоторые свидетельства того, что олово является важным элементом у млекопитающих. Основываясь исключительно на том, что вы знаете о химии олова и его положении в периодической таблице, предскажите вероятную биологическую функцию олова.

    Дано: элемент и данные в таблице 1.6

    Запрошено: вероятная биологическая функция

    Стратегия:

    Из положения олова в периодической таблице, его общих степеней окисления и данных в таблице 1.6, спрогнозируйте вероятную биологическую функцию элемента.

    Решение:

    Из его положения в нижней части группы 14 мы знаем, что олово — это металлический элемент, наиболее распространенные степени окисления которого — +4 и +2. Учитывая низкие уровни олова у млекопитающих (140 мг / 70 кг человека), олово вряд ли будет функционировать как макроминерал. Хотя нельзя исключать его роль в катализе реакций с переносом группы или в качестве важного структурного компонента, наиболее вероятная роль олова будет заключаться в катализе окислительно-восстановительных реакций, включающих двухэлектронный перенос.Это позволит использовать способность олова иметь две степени окисления, разделенные двумя электронами.

    Exercise

    Основываясь исключительно на том, что вы знаете о химии ванадия и его положении в периодической таблице, предскажите вероятную биологическую функцию ванадия.

    Ответ: Ванадий, вероятно, катализирует окислительно-восстановительные реакции, поскольку он является переходным металлом первого ряда и, вероятно, имеет несколько степеней окисления.

    Резюме

    Многие элементы в периодической таблице — это основные микроэлементы , которые необходимы для роста большинства организмов.Хотя они присутствуют только в небольших количествах, они обладают важными биологическими эффектами из-за их участия в механизме амплификации . Макроминералы присутствуют в больших количествах и играют структурную роль или действуют как электролиты, распределение которых в клетках строго контролируется. Эти ионы избирательно транспортируются через клеточные мембраны с помощью ионных насосов . Другие микроэлементы катализируют реакции передачи группы или реакции биологического окисления-восстановления, в то время как другие все же являются важными структурными компонентами биологических молекул.

    Key Takeaway

    • Важнейшие микроэлементы у млекопитающих выполняют четыре основные роли: как макроминералы, как катализаторы в реакциях группового переноса или окислительно-восстановительных реакциях, или как структурные компоненты.

    Концептуальные проблемы

    1. Приведите хотя бы один критерий для основных элементов, участвующих в биологических реакциях окисления и восстановления. Какой регион таблицы Менделеева содержит элементы, которые очень хорошо подходят для этой роли? Объясните свои рассуждения.

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *

  • Элемент * Кора (ppm; среднее) Морская вода (мг / л = ppm)
    Элементы * как известно, необходимы людям.
    O 461,000 857,000
    Si 282,000 2,2
    Al 82,30021
    82,300 9000
    Ca 41,500 412
    Na 23,600 10,800
    Mg,3000
      3
    13 ​​ 3 ​​
    399
    H 1400 108000
    P 1050 0.06
    Mn 950 0,0002
    F 585 1,3
    S 350 350 900 900 28
    Класс 145 19,400
    V 120 0,0025
    Cr 102 0.0003
    Ni 84 0,00056
    Zn 70 0,0049
    Cu 605350005000 03900000 0,00002
    Li 20 0,18
    N 19 0,5
    Br 2.4 67,3
    Mo 1,2 0,01
    I 0,45 0,06

    89

    89

    89